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Summary
Analysis of multiple traits can provide additional information beyond analysis of a single trait,
allowing better understanding of the underlying genetic mechanism of a common disease. To
accommodate multiple traits in familial correlation analysis adjusting for confounders, we develop
a regression model for canonical correlation parameters and propose joint modeling along with mean
and scale parameters. The proposed method is more powerful than the regression method modeling
pairwise correlations because it captures familial aggregation manifested in multiple traits through
maximum canonical correlation.
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1. Introduction
Memory scores are measured with other cognitive functions to assist in the diagnostic process
of Alzheimer's disease (AD). AD is a common disease, whose underlying causes include
multiple genetic as well as environmental factors (St. George-Hyslop and Petit, 2005). Because
of this multifactorial nature of the disease, gene identification studies of AD have achieved
limited success. To overcome this problem, recent attention has been paid to analyzing memory
scores (McClearn et al., 1997; Lee et al., 2004).

Memory impairment is considered to be on the pathway to AD. It is generally agreed that
accumulation of amyloid plaques and neurofibrillary tangles in the brain leads to neuronal cell
deaths in certain brain regions such as the hippocampus, which affects memory performance
prior to onset of AD. Hence, if a gene has any influence on AD, the influence would be more
direct on memory than on AD. Further, memory scores can provide information for both
affected and unaffected members, thereby enhancing power in family studies.
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Familial correlation is a fundamental analytic tool to investigate genetic influences on a
continuous trait. Familial correlation is the correlation of a trait among family members. For
a defined relationship (e.g., parent-offspring, siblings, or cousins, etc.), familial correlation
greater than zero implies that genetic factors influence the trait. But nongenetic factors
complicate the interpretation. In analyzing memory scores from AD families, memory declines
with age and tends to be lower in individuals with lower level of education, regardless of having
a susceptibility gene. In addition, familial correlation will be lower if there is a large difference
in age or education level between two family members, even if they share the same
susceptibility gene. The literature on the application of normal theory in the estimation of
Pearson's correlation is vast as reviewed by Rao and Province (2000). However, these
approaches do not fully address the issues of adjustment of nongenetic differences among
family members in the analysis, where normality assumption is most likely to be violated.
Moreover, because multiple memory scores are involved in the diagnosis of AD, which are
correlated with each other, it would be better to utilize multiple memory scores to extract
condensed information for the memory domain.

In modeling of familial correlations for a vector outcome, a straightforward extension of
existing works will be challenged by the complicated structure. Table 1 illustrates a case of
two memory scores (Y1 and Y2) and two family members (Rel1 and Rel2). Even for this simple
case, a random vector with four elements (Y1 of Rel1, Y2 of Rel1, Y1 of Rel2, and Y2 of
Rel2) generates six correlation coefficients: two (ρ1 and ρ2)describing correlation between two
memory scores within each member, which could be assumed to be the same, and four
correlation coefficients (φ11, φ12, φ21, and φ22) describing correlation between the two family
members. The first two are not of our primary interest and we call them nuisance correlation.
The remaining four correlation coefficients, which characterize familial correlation, are of
interest. With three scores and two family members, the number of correlation coefficients
reflecting familial correlation increases to 9. It is clear that modeling all pairwise correlation
coefficients separately will complicate the analysis and interpretation. Thus, we need a better
way to characterize familial correlation for a vector outcome. In this article, we propose to use
maximum canonical correlation to effectively summarize familial correlations for multiple
outcomes. In our example, maximum canonical correlation is the maximum correlation
between a linear combination of memory scores from one family member and that from another
member over all possible linear combinations. This setup allows us to investigate a genetic
influence on memory domain as a whole without focusing on specific memory scores.

For a single outcome, pair-specific adjustment for correlation model was first addressed by
Ziegler et al. (2000), implementing the generalized estimating equation (GEE) as proposed by
Prentice and Zhao (1991), which extends the GEEs by Liang and Zeger (1986). Later, Yan and
Fine (2004) added a variance model and proposed a joint modeling of mean, variance, and
correlation. These works allow us to estimate familial correlations as a function of pair-specific
covariates such as age differences of two family members, without assuming the normality.
As in the model by Yan and Fine (2004), we will express maximum canonical correlation as
a function of pair-specific covariates through regression modeling. To our knowledge, none
of the existing work addresses pair-specific regression modeling for canonical correlations.

In Section 1, we developed a regression model for canonical correlations and proposed an
estimating procedure. Adopting the joint GEEs by Yan and Fine (2004) for each outcome, we
then estimated trait-specific means, variances, and nuisance correlations, along with canonical
correlation. Section 2 describes memory data from Hispanic AD families and analyzes familial
correlations in each memory score using the method by Yan and Fine (2004). In Section 3, we
develop the regression model for canonical correlation and present the estimating procedure
and asymptotic properties of resulting estimators. In Section 4, finite sample properties are
evaluated through simulations. Section 5 revisits our motivating data analysis by implementing
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the proposed approach, and Section 6 introduces a weighting method through sensitivity
analysis. Lastly, Section 7 summarizes our work.

2. Data and Familial Correlation Analysis for a Single Trait
In this section, we describe our motivating data and show a single trait analysis using the method
by Yan and Fine (2004).

2.1 Memory Data from AD Families
The recruitment of familial AD in Caribbean Hispanics began in 1998. The main goal of the
study is to identify susceptibility genes for AD and to characterize those genes and other
environmental factors that influence the expression of AD. Families were selected from
multiple sources, including clinics in the Dominican Republic and in Puerto Rico, the
Alzheimer's Disease Research Center-Memory Disorders Center, and doctors' private offices
in the Department of Neurology and the General Medical Services at Columbia University.
Once a potential proband with AD was identified, a structured family history interview was
conducted with available family members to determine if the patient had living siblings or
relatives with AD. If the family history interview revealed additional affected family members,
we interviewed and examined all other living relatives. All family members completed the
same medical and neuropsychological examinations, and their diagnoses were required to meet
National Institute of Neurological and Communicative Disorders and Stroke and the
Alzheimer's Disease and Related Disorders Association research criteria for probable or
possible AD (Ramas et al., 2002; Lee et al., 2004).

Memory was a part of the neuropsychological tests, which employed selective reminding test
(SRT) and Benton visual retention test (BVRT). The SRT is used to assess verbal memory and
dementia, while the BVRT examines nonverbal memory. The tests were administered to all
family members. In the SRT, subjects were administered six trials in which they were given a
list of 12 unrelated words to memorize. After each attempt at recalling the list, the subject was
reminded only of the words that were not recalled and then asked to recall the entire list. Verbal
memory was measured from the total recall score (TR; max score = 72, failure < 25) or the
number of words recalled with and without reminding over the six trials (LTR; max score =
72, failure < 15), along with delayed recall, which was measured by asking the subject to recall
the original 12-word list 15 minutes after completing the SRT (DR; max score = 12, failure <
4). Using those three verbal scores, we aim to examine familial correlation for sib pairs in these
AD families.

A total of 855 subjects from 181 families yielded 1459 sib pairs with the three verbal memory
scores. As shown in Table 2, the number of family members varied from 2 to 19. The mean
scores for TR, LTR, and DR were 20.10 (SD = 17.22), 13.45 (SD = 14.27), and 2.70 (SD =
2.90), respectively; 55% were affected with AD, and 65% were women. The mean age was 72
years (SD = 13), and the mean age difference between two siblings was 7 years (SD = 5, lower
quartile[Q1] = 3, median[Q2] = 6, and upper quartile [Q3] = 11). The mean time of education
was 6 years (SD = 5), and the mean difference of years of education was 3 (SD = 3, Q1 = 1,
Q2 = 2, and Q3 = 4). We first examined simple familial correlation. The Pearson's correlations
(95% CI) for TR, LTR, and DR scores were 0.302 (0.254, 0.348), 0.307 (0.260, 0.353), and
0.251 (0.202, 0.298), respectively. Because these correlations significantly differ from zero,
one may hypothesize that genetic factors influence TR, LTR, and DR scores. However, familial
correlations were reduced as the differences in age or years of education increased, and the
familial correlation for DR was no longer significant when age difference was greater than the
third quartile. Table 3 illustrates the phenomenon.
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2.2 Single Trait Familial Correlation Analysis
Because both subject-specific levels of age, education, or sex and pair-specific differences in
those levels can confound estimation of familial correlation, we applied the method by Yan
and Fine (2004) to adjust this feature, which uses three GEEs for the mean, scale, and Pearson's
correlation parameters. For the mean model, identity link function was used, and subject-
specific covariates include sex, age, and years of education. The scale model was an intercept
model. For the correlation model, using the rescaled Fisher's z-transformation, we first fitted
an intercept model and then a model with pair-specific covariates including the absolute values
of differences in years of education and age, and the indicator of discordance for sex. We
analyzed one memory score at a time.

Table 4 shows regression coefficient estimates and standard errors for the mean, scale, and
correlation models. The p-values are for the null hypothesis that parameters from each model
are equal to zero. The familial correlation estimates are presented from the correlation models.
TR, LTR, and DR scores decreased with age but increased with years of education. There was
no significant sex difference in TR. After adjusting for subject-specific confounders in the
mean model (model 1), the estimated correlation for siblings from the intercept model was
0.068 (p-value = 0.023) in TR. When additional adjustment was made for the differences
between two siblings in their education, age, and sex (model 2), the estimated correlation
increased to 0.209 (p-value = 0.005). In other words, if two siblings had no differences in those
pair-specific confounders, the familial correlation would be 0.209, instead of 0.068.
Analogously, for LTR, the estimated correlation would be 0.164 (p-value = 0.030) rather than
0.064 (p-value = 0.035); and for DR, the estimated correlation would be 0.113 (p-value = 0.132)
rather than 0.036 (p-value = 0.214).

In this single-trait analysis, we found that familial correlation estimates for sib pairs decreased
after adjusting for subject-specific confounders in the mean model; however, they increased
after additionally adjusting for pair-specific differences. This phenomenon was consistently
observed for all three outcomes. Because these pair-specific differences are known
confounders, we presume that estimates from the adjusted model 2 are likely to be closer to
the true values. Although correlations for DR were not significant at the level of 0.05, we
observed a similar tendency in these three verbal memory scores. Thus, it is of interest to
determine a method to summarize these three familial correlations as a multivariate familial
correlation for this verbal memory domain.

3. Proposed Method for Multivariate Familial Correlation Analysis
In this section, we propose a regression model for maximum canonical correlations to
implement that for multivariate familial correlation analysis. For the jth member from the ith
family, the outcome Yij = (Y1ij, Y2ij, ⋯, Ymij) is an m × 1 vector carrying m multiple traits, and

 is a matrix with m rows and columns including all potential covariates, j = 1, ⋯, ni. We
denote the conditional mean of Yij given  by μij = (μ1ij, μ2ij, ⋯, μmij).

3.1 Regression Model for Canonical Correlation
Canonical correlations are often defined as the eigenvalues of a certain function of covariances.
For a pair from the ith family, let Yi = (Yi1, Yi2) be the 2m × 1 outcome vector, and the variance
of Yi be
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where Σ11i = Var(Y i1), Σ12i = Cov(Yi1) Cov(Yi2), Σ21i = Σ21i
T, and Σ22i = Var (Yi2) When a

and b are m × 1 vectors, standard approach states that maximum canonical correlation between
aT Yi1 and b T Y i2, say γ 1i, over all possible choices of a and b is a positive square root of the
maximum eigenvalue of . Denoting eigenvalues of  as

 Borga (1995) showed that ordered eigenvalues of  are (γ 1i, γ 2i, ⋯
γ mi, -γ mi, ⋯, - γ 2i, -γ 1i) when

and

where 0 denotes a corresponding zero matrix. Note that the eigenvectors of  contain a
linear combination of eigenvectors of  and a linear combination of eigenvectors
of . Using the covariance function , we set up a regression model for
maximum canonical correlation.

For the pth pair from the ith family, p = 1, ⋯, P i, we first consider a standardized variable for
a moment so that  is a zero vector and  is a correlation matrix. Because we are not interested
in correlations among traits within each member, we assume that nuisance correlation matrices
are identical for all pairs (Σ11i = Σ22i = Σ) and drop subscript i for B. As for the eigenvector
corresponding to the largest eigenvalue, we assume common eigenvector for all pairs. Because
our interest is to model the pair-specific largest eigenvalue; e1 denotes the common eigenvector.
Hence, we have the following eigenvalue equation:

(1)

where  is the pair-specific largest eigenvalue of B-1Aip.

As for the systematic part of the model, we assume that  where g(·) is twice the
differentiable link function,  is a 1 × r pair-specific covariate vector and α is r × 1 regression
parameter that relates the covariate to the maximum canonical correlation. One useful link

function is , which guarantees . That is,

. We will use notation γ(α) to emphasize the dependence of γ on α.

As the correlation regression model in the single trait case uses a product of single trait between
two members as an “outcome,” we need a similar random quantity to construct a regression
model for canonical correlations. Consider a random matrix
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then we have . To construct an unbiased estimating equation for α, we rearrange

equation (1) to  and subsequently . Note that we

have  From this, assuming B is known, an unbiased estimating
equation for α can be constructed as follows:

(2)

where  is the variace of As
i which is a

Pi × P i matrix, and ê1 is an eigenvector corresponding to the largest eigenvalue of B-1ĀS and

 where N is the total number of pairs. Let  be the solution of equation (2).
Theorem 1 states that  is consistent and asymptotically normally distributed. A proof is given
in Web Appendix A.

Theorem 1 (Asymptotic property of  for known B). Under regularity conditions,  is
consistent for the true α, α0, and  is asymptotically normally distributed with

mean 0 and variance  where  and

.

3.2 Joint Modeling with Trait-Specific Parameters
We drop the assumption that Yij is a standardized variable; that is, μij is no longer a vector of
zero, and  is not a correlation matrix. Further, nuisance correlation B is unknown. We
estimate trait-specific means, variances, nuisance correlations, along with canonical
correlation, through a joint regression method in the framework of GEEs.

As in the single-trait case, for the kth trait, we define Yki =(Yki1,…,Ykini) and

, where φkij is a part of variance that does not depend on μkij. Denote

sij = (s1ij, s2ij, … where . For the scale parameter model, the ni × 1 vector
ski = (ski1,…,skini) serves as an “outcome.” Let X1i and X 2i be ni × p and ni × q covariate matrices
for mean and scale factor whose columns consist of a subset of columns of X*

i. We assume
that g1k (μki) = X1i βk and g2k (φki) = X 2i ζ k, where g1k and g2k are link functions, respectively.
As for nuisance correlations, we assume those to be common in all subjects. That is, ρijkl =

Corr(Y ijk, Y ijl | Xi*) = ρkl, where 1 ≤k < l ≤m. We define an  vector φ = (ρ12,
ρ13, …, ρ(m -1)m), and use zi =(zi1 + zi2)/2 for a pair as an “outcome,” where zij =(zij12, zij13,

…, zij(m -1)m), and . Finally, for canonical
correlation, we use equation (2), but note that Y kij will need to be standardized as

 for ;  denotes the standardized .
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Denoting covariance matrices of Y ki and ski by V 1ik and V 2ik, respectively, we construct the
following estimating equation for the parameter θ = (β1, …, βm, ζ 1, …, ζ m, φ, α):

(3)

where k = 1, …, m. Let  be the solution of equation (3). Theorem 2 states that  is consistent
and asymptotically normally distributed. A similar proof to Theorem 1 can be obtained but is
omitted for brevity. Note that V 1ik, V 2ik, and V i can be replaced by working covariance matrices
without loss of asymptotic property from the framework of GEEs.

Theorem 2. Under regularity conditions, the r 1 vector  is consistent for the true θ, θ0, and

 is asymptotically normally distributed with mean of 0 and variance of

, where  and . Details of 
and  are given in Web Appendix B.

4. Simulations
Simulation studies were conducted to evaluate the finite sample performance of regression
canonical correlation estimator from the proposed model. Considering the cases of m = 2 and
m = 3, we replicated 500 times when the number of pairs varied 100, 200, and 500. In standard
canonical correlation analysis, it is known that weaker canonical correlations require a larger
number of samples (Stevens, 1986). Through simulations, Lee (2007) showed that jackknife
estimator via deletion of the ith pair reduces the bias in the estimation of canonical correlations,
but the variance of the jackknife estimator is much larger than the variance of the biased
estimator. Therefore, for the proposed model, we applied the jackknife technique (Quenouille,
1949; Tukey, 1958) in the estimation and employed bootstrap variance estimates of the bias-
corrected estimator when the number of pairs is less than 500.

Outcome was generated from the standardized multivariate normal of length 4 (m = 2) and 6
(m = 3), recognizing that our joint regression model estimates canonical correlation while
standardizing for each outcome. We set 0.5 for the components of nuisance correlation matrix
Σ. In computing Σ12i, we used the eigen decomposition B-1Ai = P i Λii P -1i,where Λi is the
diagonal matrix whose diagonal components are eigenvalues of B-1Ai and P i is the matrix
whose columns are eigenvectors corresponding to each eigenvalue. In the equation, because
we want to compute Σ12i depending only on γ 1i, common eigenvector P was assumed and
specified by implementing an initial Σ12 similar to the dataset. For Λi, at α0 = (0.3, 0.5, 1.0,

1.5, 1.8), we computed  considering (i) X i = 1 and (ii) X i ~ U (0, 1), which
translated to γ 1i ranging from 0.12 to 0.72. For m = 2, we set the second-ordered canonical
correlation γ2i = 0.5γ1i and for m = 3, we additionally set γ3i = 0.3γ1i. The choice of Σ or P
does not affect the evaluation of α estimators.

Tables C.1-C.4 in Supplementary Materials summarize the simulation results for  obtained
by solving equation (2) and the jackknife estimates , reporting the bias, simulation variance
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(EMP), and coverage rate of 95% confidence interval (95% CR). For the bootstrap jackknife
variance estimator in 100 and 200 pairs, we obtained jackknife estimates for 1000 bootstrap
samples from each run of the simulation in each configuration. Bias of  was negligible when
n = 500. With 200 pairs, bias was not negligible when α0 < 0.5; with 100 pairs, bias was not
negligible when α0 < 1.0. In both cases, we note that all finite sample biases were corrected
with jackknife estimates . However, the coverage rates of  from the standard approach were
lower than the expected lower bound when biases were nonnegligible. After applying the
bootstrap, we observed the bias for variance estimates of  to be corrected and the coverage
rates from that to be within the expected 95% confidence limits. Trends were similar, but biases
were generally larger under uniform Xi and m = 3. With the number of pairs less than 500, we
recommend using jackknife bias correction along with the bootstrap jackknife variance
estimation, especially for weaker canonical correlations.

5. Multivariate Familial Correlation Analysis
We revisit the analysis of three memory scores in Section 2 and implement the proposed method
to present a multivariate familial correlation for the verbal memory domain. Table 5
(unadjusted) presents the results. The mean model included sex, age, and education as subject-
specific covariates. Scale and nuisance correlation models were unadjusted. Two canonical
correlation models were fitted: Model 1 for intercept model and Model 2 adjusted for the
differences in years of education and age, and the indicator of discordance for sex. The results
for the mean and scale models were the same as those in Table 4, so we omitted them in this
presentation. In addition, we did not consider the bootstrap jackknife variance because our
samples included 1459 pairs. The familial canonical correlations for sib pairs were 0.084 (p-
value = 0.005) for model 1 and 0.154 (p-value = 0.004) for model 2, respectively. The familial
canonical correlation from the model 2 represents a multivariate familial correlation when there
were no differences in age, education level, and sex between two siblings. Hence, we conclude
that there is a significant genetic effect on verbal memory domain measured by TR, LTR, and
DR in AD families, after controlling for both subject and pair-specific nongenetic differences
between two family members.

6. Sensitivity Analysis Using Weighted Estimating Equations
Until now, we have not taken into account the fact that families were selected because the
families had at least two members affected with AD. Thus, the interpretation of results should
be conditioned on the sampling scheme. To draw an unconditional inference, the proposed
method can be extended using a weighting method where the weight is the inverse of a selection
probability, when the selection probability for each family can be estimated. Employing the
weighted GEEs by Robins, Rotnitzky, and Zhao (1995), which applies the Horvitz-Thompson

(1952) inverse probability, we consider  where  is equation (3) and
πi denotes a selection probability for the ith family.

Because we did not have data to estimate selection probability, we conducted a sensitivity
analysis by varying selection probability. It is generally agreed that the selection probability
for a given family will increase as the number of affected family members increases. Assuming
selection probability is proportional to the number of affected members or the number of total
members for the ith family, we considered two situations: (i) πi = cai and (ii) πi = cni, where
c is a constant, and ai and ni are the number of AD affected members and the number of total
family members, respectively. Note that the choice of c does not affect the results. Table 5
(adjusted) includes the results. In model 1, the familial correlation unadjusted for selection was
greater than that adjusted for πi = cai, while it was smaller than the one adjusted for πi = cni.
In model 2, the familial correlation unadjusted for selection was smaller than those adjusted
for two types of selection probabilities. This observation suggests that the support for genetic

Lee et al. Page 8

Biometrics. Author manuscript; available in PMC 2009 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



influence on verbal memory domain would have been greater if families were randomly
selected. Our sensitivity analysis shows that the qualitative conclusion drawn in Section 5
remains the same even after some plausible selection bias was adjusted.

7. Summary and Further Study
In this article, we propose a regression approach for a multivariate familial correlation analysis
implementing maximum canonical correlation. Multivariate quantitative trait analysis is a
recent topic of interest in the genetics of common diseases. Because most common diseases
are characterized by a combination of multiple subclinical phenotypes, multiple quantitative
traits used to help the diagnosis of a disease can enhance our understanding of the role of
underlying genetic factors toward the disease of interest. To support, we developed a regression
model for canonical correlation parameter to adjust for pair-specific confounders, and then
jointly modeled the canonical correlation parameters with trait-specific mean, scale, and
nuisance correlation parameters. This regressionadjusted maximum canonical correlation is to
interpret a multivariate familial correlation as if two family members had no differences in
nongenetic confounders.

We further propose a means to take into account selection in our multivariate familial
correlation. As in our example, families are often selected only when they include affected
members. Hence, as the number of affected family members increases, the possibility of
selection for a given family increases. Unlike the analysis of dichotomized outcomes, there is
no standard way of conditioning out a selection or ascertainment bias in familial correlation
analysis. We extended our proposed model to implement a weighting method where the weight
is the inverse of a selection probability. However, this approach can be difficult in practice
because it is often unavailable to estimate reliable selection probabilities for each family. We
also did not have data available for the estimation of selection probabilities, so sensitivity
analysis was included using different selection probabilities.

The proposed approach can have a great impact in various areas using canonical correlations,
such as social-science areas that use greater dimension of outcomes, as well as other types of
genetic analyses implementing familial correlations, such as heritability estimation.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgements
This work was supported in part by the National Institute on Aging, National Institutes of Health R37 AG15473 and
National Institute of Neurological Disorders and Stroke R01 NS036928. The first author is grateful to Dr Jeffrey
Krischer for his support. We thank the reviewers and associate editor, whose comments substantially improved our
manuscript.

References
Borga, M. Thesis No. 507. 1995. Reinforcement learning using local adaptive models. ISBN

91-7871-590-3
Horvitz DG, Thompson DJ. A generalization of sampling without replacement from a finite universe.

Journal of the American Statistical Association 1952;47:32–685.
Lee H-S. Canonical correlation analysis using small number of samples. Communications in Statistics:

Simulation and Computation 2007;36:32–985.
Lee JH, Flaquer A, Stern Y, Tycko B, Mayeux R. Genetic influences on memory performance in familial

Alzheimer disease. Neurology 2004;62:32–421.

Lee et al. Page 9

Biometrics. Author manuscript; available in PMC 2009 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Liang KY, Zeger SL. Longitudinal data analysis using generalized linear models. Biometrika
1986;73:32–22.

McClearn GE, Johansson B, Berg S, Pedersen NL, Ahern F, Petrill SA, Plomin R. Substantial genetic
influence on cognitive abilities in twins 80 or more years old. Science 1997;276:32–1563. [PubMed:
9122704]

Prentice RL, Zhao LP. Estimating equations for parameters in mean and covariances of multivariate
discrete and continuous responses. Biometrics 1991;47:32–839.

Quenouille M. Approximation tests of correlation in time series. Journal of the Royal Statistical Society
1949;11:32–84.Series B

Ramas SN, Santana V, Williamson J, Ciappa A, Lee JH, Rondon HZ, Estevez P, Medrano M, Torres M,
Stern Y, Tycko B, Mayeux R. Familial Alzheimer disease among Caribbean Hispanics. Archives of
Neurology 2002;59:32–91.

Rao DC, Province MA. The future of path analysis, segregation analysis, and combined models for genetic
dissection of complex traits. Human Heredity 2000;41:32–42.

Robins JM, Rotnitzky A, Zhao LP. Analysis of semiparametric regression models for repeated outcomes
in the presence of missing data. Journal of the American Statistical Association 1995;90:32–121.

Stevens, J. Applied Multivariate Statistics for the Social Sciences. Lawrence Erlbaum Associates, Inc;
Mahwah, New Jersey: 1986.

St. George-Hyslop PH, Petit A. Molecular biology and genetics of Alzheimer's disease. Comptes Rendus
Biologies 2005;328:32–130.

Tukey J. Bias and confidence in not quite large samples. Annals of Mathematical Statistics 1958;29:614.
Yan J, Fine J. Estimating equations for association structures. Statistics in Medicine 2004;23:32–874.
Ziegler A, Kastner C, Brunner D, Blettner M. Familial association of lipid profile: A generalized

estimating equations approach. Statistics in Medicine 2000;19:32–3357.

Lee et al. Page 10

Biometrics. Author manuscript; available in PMC 2009 July 22.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Lee et al. Page 11

Table 1
Correlation structure for two outcomes from two family members

Y1 of Rel1 Y2 of Rel1 Y1 of Rel2 Y2 of Rel2

Y1 of Rel1 1 ρ1 ϕ11 ϕ12

Y2 of Rel1 ρ1 1 ϕ21 ϕ22

Y1 of Rel2 ϕ11 ϕ21 1 ρ2

Y2 of Rel2 ϕ12 ϕ22 ρ2 1
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