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Abstract

The NIA Long Life Family Study (LLFS) is a longitudinal, multicenter, multinational, population-based multigenerational family study of
the genetic and nongenetic determinants of exceptional longevity and healthy aging. The Visit 1 in-person evaluation (2006-2009) recruited
4 953 individuals from 539 two-generation families, selected from the upper 1% tail of the Family Longevity Selection Score (FLoSS, which
quantifies the degree of familial clustering of longevity). Demographic, anthropometric, cognitive, activities of daily living, ankle-brachial
index, blood pressure, physical performance, and pulmonary function, along with serum, plasma, lymphocytes, red cells, and DNA, were
collected. A Genome Wide Association Scan (GWAS) (Ilumina Omni 2.5M chip) followed by imputation was conducted. Visit 2 (2014-2017)
repeated all Visit 1 protocols and added carotid ultrasonography of atherosclerotic plaque and wall thickness, additional cognitive testing,
and perceived fatigability. On average, LLFS families show healthier aging profiles than reference populations, such as the Framingham
Heart Study, at all age/sex groups, for many critical healthy aging phenotypes. However, participants are not uniformly protected. There is
considerable heterogeneity among the pedigrees, with some showing exceptional cognition, others showing exceptional grip strength, others
exceptional pulmonary function, etc. with little overlap in these families. There is strong heritability for key healthy aging phenotypes, both
cross-sectionally and longitudinally, suggesting that at least some of this protection may be genetic. Little of the variance in these heritable
phenotypes is explained by the common genome (GWAS + Imputation), which may indicate that rare protective variants for specific phenotypes
may be running in selected families.
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Longevity is associated with compression of disability (1,2) at ex-
treme ages, morbidity is compressed as well (3). The familiality of
such compression and underlying causative factors are unknown.
Individuals differ markedly in rates of age-related changes in
differing functions that influence the risk of morbidities in late life.
The National Institute on Aging Long Life Family Study (LLFS) was
designed to assess genetic and behavioral/environmental risk factors
associated with exceptional longevity by employing a family-based
cohort design. The exceptionally healthy LLFS population provides
a unique resource to identify familial and genetic factors contrib-
uting to favorable cross-sectional profiles and trajectories of change
with age. LLFS is a unique multicenter, multinational resource for
discovering protective alleles and associated biological signatures
for Healthy Aging Phenotypes (HAPs) and Exceptional Longevity
(EL) (4,5). No other study has LLFS’ size and degree of exceptional
familial longevity, as fewer than 1% of Framingham Heart Study
(FHS) families would meet the EL selection criteria for LLFS (6).
Furthermore, specific HAPs may constitute differing pathways or
mechanisms to exceptional longevity, which is exhibited among
LLFS families. Some LLFS families demonstrate longer health spans
and marked delays in the onset of, for example, dementia and heart
disease (3,7,8), whereas other families demonstrate healthy meta-
bolic profiles (9). Furthermore, there is a limited overlap of families
that demonstrate clustering of individuals with exceptional memory,
grip strength, pulmonary function, blood pressure, and/or metab-
olism (8,10-13) Additionally, the delay in many of these diseases is
observed not only in the LLFS older generation but also in the off-
spring generation, who are in their 60s through early 80s (14). Here
we describe the study design, family selection criteria, demonstration
of favorable phenotypes on average, heterogeneity of families and
calculation of change trajectories for key healthy aging phenotypes,
and their heritabilities.

Method

Identification of Families

The U.S. field centers used Center for Medicare and Medicaid Services
lists of Medicare enrollees to mail a recruitment brochure. The initial
file included people who were at least 79 years old on January 1,
2005; had no recorded date of death; were not in the end-stage renal
disease or hospice programs; lived in zip codes near (within 3 hours
driving distance) one of the 3 U.S. study centers (Boston University
Medical Center in Boston, MA, Columbia College of Physicians
and Surgeons in New York, NY, and the University of Pittsburgh in
Pittsburgh, PA). An age/sex stratified pilot mailing tested the yield of
exceptionally long-lived families recruited from mailing to individ-
uals in their 80s versus higher age strata (N = 881 responses). Based
on these yields, subsequent mailings targeted those age 89 and older.
Study participants were also recruited from local communities using
mailed brochures, posters, web-based media and newspaper ad-
vertisements, as well as community-based presentations. Additional
mailing lists were obtained through voter registries and purchased
public domain lists from various commercial vendors (8).

The University of Southern Denmark field center identified in-
dividuals who would be ages 90 and above during the study re-
cruitment period through the Danish National Register of Persons,
which contains current information on names, including past names
such as maiden names for women, addresses, place of birth, mar-
riages, and vital status (15). Archived parish registers in Denmark
were searched for information on the place of birth and the names

were searched to locate the parents of the older adults to identify
sibships. Based on the above information, 659 potentially eligible
families were identified ranked by the Family Longevity Selection
Score (FLoSS). Contact was made with potential probands to further
assess the family’s eligibility for and willingness to participate in the
LLFS using criteria parallel to that used in the United States.

Family Longevity Selection Score

The FLo0SS was developed to quantify the degree of familial lon-
gevity for inclusion in the LLFS (6). There are 2 components to the
score. The first component is based upon the (log) tail probability
of each sibling’s survival status (living or dead) derived from the
appropriate age/sex/birth cohort life tables. The values are summed
to obtain a score for the entire sibship. A value of zero in this com-
ponent indicates survival exactly as expected from the life tables,
and the higher the values the more the survival experience of that
sibship exceeds that expected for the population. The score is scaled
so that the expected value is independent of sibship size. The second
component adds a “bonus” for each living sib since we wanted to
identify larger families for prospective evaluation. To be eligible, a
proband sibship had to have a FLoSS of 7 or greater and a minimum
family size of 3 (specifically the proband, at least one living sibling,
and one offspring), all willing and able to give informed consent
and participate in the interview and in-home examination including
providing a blood sample for serum and DNA extraction. Based on
our CMS pilot data, as well as comparison to the FHS families, we
determined that using these selection criteria represents the upper
< 1% tail of the exceptional survival distribution. Thus, the least
exceptional family in LLFS shows more extreme familial longevity
than 99% of the Framingham Heart Study families.

Establishment of the LLFS Cohort: Visit 1

The original recruitment and examination for LLFS were conducted
over a 3-year period, April 2006-May 2009. LLES successfully en-
rolled and extensively phenotyped 4,953 individuals from 539 two-
generational families that demonstrated clustering for exception
longevity in the upper generation (ie, with a sibship FLoSS > 7) from
3 US field sites (Boston University, Boston, MA; Columbia University,
New York, NY; and University of Pittsburgh, Pittsburgh, PA) and
one field site in Denmark (University of Southern Denmark, Odense,
Denmark; Table 1). These families included long-lived individuals
(generally 90+), their siblings, spouses, offspring of all siblings, and
spouses of the offspring (to serve as an internal control group). The
average family size was 9.1 members (range 3-79). 55.2% of the
cohort at the time of enrollment was female, and 99% was white.
The mean age of the proband generation was 90.2+6.6 years (range
55-110), and that of the offspring generation was 61.2+8.4 years
(range 25-88). The average FLoSS was 11.7 (range 7-33.9).

Components of In-Home Exams

Interviews and examinations were conducted in the home setting
with portable equipment by centrally trained and certified research
assistants using a common protocol. All family members, regardless
of age, had the same assessment battery. At the baseline examin-
ation, all participants had to be able to give informed consent to
participate. At follow-up, participants who were ill or who had inci-
dent dementia continued to participate whether proxy consent was
obtained and they could express assent and cooperation. We used
proxy interviews for selected questionnaires where participants were
unable to answer for themselves due to illness. If an in-home visit
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Table 1. Characteristics of the LLFS Sample by Generation and Field Center
Boston U U Pittsburgh Columbia U Denmark Overall
Visit 1: 2006-2009
Families 134 159 170 76 539
Generation Proband  Offspring Proband  Offspring Proband  Offspring Proband  Offspring Proband  Offspring
N 456 852 488 816 523 555 260 1003 1727 3226
Age = SD 90.2+73 61.0+8.1 89.7x6.1 60.6=8.5 90.0=6.5 61.0=£84 91263 61985 902=66 61284
Range 55-110 33-88 72-105 37-87 67-109 25-88 w65-104  36-88 55-110 25-88
% Female 57.7 55.5 51.8 57.6 54.2 56.3 63.1 52.2 55.7 55.2
% White 99.2 99.3 99.4 99.7 97.4 98.1 100.0 99.9 98.9 99.4
Family size Mean 9.5 8.2 6.4 16.7 9.1
Range 3-49 3-43 3-21 3-79 3-79
FLoSS Mean 12.1 10.8 11.2 14.8 11.7
Range 7.0-33.9 7.0-29.8 7.0-29.8 8.0-28.0 7.0-33.9
Visit 2: 2014-2017
Generation Proband  Offspring Proband  Offspring Proband  Offspring Proband  Offspring Proband  Offspring
N 95 651 147 541 174 466 62 768 478 2426
Age = SD 91482 67.6+x7.7 93.5+6.1 68.0+8.0 93.6+64 68179 92.7+68 69477 93.0+6.8 684+7.9
Range 56-107 40-95 79-106 45-93 65-108 42-89 72-110 46-95 56-110 40-95
% Female 61.1 53.3 61.2 56.6 551 56.9 72.6 52.9 61.5 54.6
% White 97.9 99.9 99.3 99.6 97.7 98.1 100.0 99.2 97.9 99.3

Note: FLoSS = Family Longevity Selection Score; LLFS = Long Life Family Study.

was not feasible, we conducted a comprehensive telephone interview
and obtained biological specimens (blood or saliva sample) using
an outside laboratory or physician’s office. Selected measures were
designed to assess aspects of EL that (i) have significant heritability,
(ii) are related to longevity and healthy aging, and (iii) can be as-
sessed in the home setting. In Table 2, we give more details about
the items obtained within each healthy aging phenotype domain and
give a comparison to what is measured in FHS. In-home visits last
an average of 3 hours per participant and included cognitive, phys-
ical, spirometry, and carotid artery ultrasound scans (year 2 only).
Blood specimens were collected at home visits and banked at the
Central Biospecimen Laboratory at the University of Minnesota and
included sera, whole blood, DNA extraction, PAXgene tubes for
RNA profiling, and banked lymphocytes.

Annual Follow-up

Annual telephone follow-up is conducted to update vital status and
medical conditions. Expanded follow-up is conducted every year
for the proband generation and includes reported physical function,
activities of daily living, and telephone assessed-cognitive function.
Because they are generally so much younger these items are assessed
only every 3 years for the offspring generation. However, once an
offspring generation participant reaches age 70, they are given the
expanded follow-up yearly. Annual follow-up has a high comple-
tion rate of 81%-85%, depending on the generation. To encourage
continued engagement in the study, the Field Centers send holiday
greeting cards, calendars, birthday cards, and short research updates
as well as an annual newsletter.

Mortality of the Cohort and Valid Cause of Death

Seventy-three percentage of the proband generation and 7% of
the offspring generation have died according to family members
and regular queries to the National Death Index. We performed a
cause of death adjudication for all reported deaths in the United
States (for the Denmark Field Center, validated causes of death
are obtained through the centralized Danish Medical System). An
Adjudication Committee consisting of 4 physicians evaluates all

relevant collected information on each reported death, to determine
immediate, primary, and contributing causes of death, following
a standard protocol. Records evaluated include death certificates,
hospital, nursing home, and medical records, as well as next of
kin reports. This has been particularly important for identifying
dementia-related deaths, which remain underreported on death
certificates.

Genotyping and Sequencing

Genome-Wide Association data were generated using Illumina 2.5M
Omni SNP array, which was imputed to 38M SNPs using 1000
Genomes imputation, resulting in a number of publications (16-21)
and which have been shared with the broader scientific community
via dbGaP (dbGaP Study Accession: phs000397.v1.p1). We also
performed targeted exome sequencing of selected candidate genes
for rare coding variation associated with health and longevity in all
participants (22). An LLFS ancillary pilot study conducted Whole
Exome Sequencing on one subject per pedigree. Approximately 40
circulating biomarkers that include (but not limited to) lipid me-
tabolism, hematologic profiles, an array of endocrine biomarkers,
kidney function, inflammation, and glucose homeostasis were
measured in all participants. The age and sex distributions of these
age-related biomarkers have been reported (23).

Longitudinal Change: Visit 2

A second in-home evaluation (Visit 2) was conducted on LLFS par-
ticipants approximately 8-10 years after Visit 1, from 2014 to 2017
(Table 1). We repeated measures that were expected to show change
over time, updated medical history and medications, and repeated a
blood draw. We enhanced the Visit 2 examination by adding in-home
portable carotid ultrasound to better define vascular health (Table 2).

Estimation of Personal Longitudinal Change
Phenotypes: Random Coefficient Models (a.k.a.
Growth Curves)

Longitudinal studies can characterize rates-of-change in aging-related
phenotypes, both at a group level and at a personal level. For a study
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such as LLFS, where we have evidence that there is overall protec-
tion, but at the same time considerable heterogeneity, it is important
to accurately assess individual longitudinal change for each LLFS par-
ticipant for every key phenotype. The most obvious way to calculate
individual change slope is to simply calculate the change in pheno-
type per unit time (ie, the difference between the participant’s Visit 2
and Visit 1 Phenotype, divided by the time between the visits). This is
equivalent to fitting a separate Ordinary Least Squares (OLS) regres-
sion model individually to each participant. However, if phenotypes
are measured with error (as they always are to at least some extent),
then these measurement errors accumulate in these calculations—they
do not cancel. In fact, for independent measurement errors, the error
variance of the change in phenotype between the 2 visits is the sum
of the 2 visit error variances. The increase in error in calculating in-
dividual change with this simple approach reduces the ability to
assess the impact of risk and/or protective factors influencing indi-
vidual trajectories. In fact, as demonstrated in the following section,
the heritabilities of these simple personal OLS estimates of change
are virtually zero because the increase in error variance overwhelms
any heritability signal. Consequently, we estimated individual longitu-
dinal change using a random coefficient model (RCM), also known as
growth curve model (24). This approach has been particularly useful
in estimating the longitudinal change in genetic and family studies,
including LLFS (eg, (25-28)). The RCM properly models the error in
phenotype measurement at each time point and thereby avoids the in-
crease in error variance which is the root problem of the simpler indi-
vidual OLS approach. The mathematical details of the RCM are given
in Supplementary Appendix 1, but in concept, the model simultan-
eously estimates each participant’s personal trajectory while also using
all participant’s data by making the additional assumption that the
population of intercepts and slopes are multivariately normally dis-
tributed with an unknown variance—covariance matrix. This produces
smoothed individual slopes and intercepts, trading bias for increased
precision. The RCM effectively transforms the individual data from
outcomes at each time point to individual slopes and intercepts for
each participant. These individual slopes and intercepts then become
new phenotypes for evaluation, and in particular, the RCM slopes are
estimates of individual trajectories with age. We systematically gener-
ated individual growth curve trajectories for all key phenotypes and
all participants in LLFS, and calculated the heritabilities of each cross-
sectionally and longitudinally (Table 3).

Estimation of Heritability
Exclusions and covariate adjustment
Exclusions were made based on each phenotype as follows. For systolic
blood pressure (SBP), diastolic blood pressure (DBP), pulse pressure,
and pulse rate, modifications to the data were made if participants were
taking antihypertensive medications (SBP+15 and DBP+10). For glucose
and hemoglobin Alc, analyses were only performed on nondiabetics.
Participants were defined as having diabetes if their fasting glucose was
>126 mg/dL or their glycated hemoglobin was >6.5 or they reported
current diabetes or were taking diabetes medications. Participant values
were set to missing if they reported diabetes or were taking medications
for diabetes; glucose values were also set to missing if the participant
was nonfasting. For lipid traits, values were set to missing if the partici-
pants were taking lipid-lowering medications or were not fasting.

Visit 1 values were adjusted for gender, age at Visit 1, age at Visit
1 squared, and field site. Visit 2 values were adjusted for gender, age

at Visit 2, age at Visit 2 squared, and field site. The change from
Visit 1 to Visit 2, A = ((Visit 2-Visit 1)/years passed), was adjusted
for gender, baseline age, baseline age squared, and field site. Years
passed is calculated as (date of Visit 2 - date of Visit 1)/365.25. The
individual growth curve slope phenotypes were adjusted for gender,
baseline age, baseline age squared, and field site.

The basic heritability analyses of selected key LLFS phenotypes,
summarized in Table 3, were calculated with 2 major assumptions:
(i) ignore the potential impact of mortality selection on heritability
and (ii) restrict the calculation to those participants who have both
Visit 1 and Visit 2 measurements for each phenotype (ie, estimating
conditional heritabilities). Heritability estimation for the longitu-
dinal slopes was performed using Sequential Oligogenic Linkage
Analysis Routines (SOLAR) by employing a pedigree-/kinship-based
model.

Results

Previously published findings have demonstrated that the LLFS fam-
ilies have lower rates of many of the diseases of older adults, and
show healthier aging profiles than other random sample cohorts
(5,8,29-33). In Figure 1, we show a comparison of key phenotypes
between the LLFS and an age-sex-matched sample from FHS, in age
categories of <60, 60-80, 80-100, and >100, using cross-sectional
data (first measurement on each subject for each measure). We con-
sidered all measures where we wanted to harmonize the LLFS meas-
ures with the Framingham study. Note that across age/sex groups,
LLFS participants have a lower average maximum intima-media
thickness (IMT; ie, lower atherosclerotic burden), lower rates of cor-
onary heart disease, healthier HDL cholesterol levels and pulmonary
function (FEV /FVC), and lower age/sex prevalence of diabetes and
hypertension. These findings are all the more remarkable, consid-
ering that BMI is one of the few risk factors that does NOT show
a lower profile in LLFS. In fact, the age-/sex-specific prevalence of
obesity is nearly identical for the 2 studies. With regard to cognitive
functioning, the LLFS cohort shows higher performance in cogni-
tive domains including attention, memory, and semantic processing.
Furthermore, the LLFS offspring generation has significantly lower
rates of major diseases of aging, including diabetes, chronic pul-
monary disease, and peripheral artery disease, and shows signifi-
cantly more favorable profiles of quantitative traits of health aging
such as blood pressure, lipids, functional performance, and cognitive
indices compared with the FHS.

The cross-sectional and longitudinal heritabilities for key healthy
aging phenotypes are shown in Table 3. For most phenotypes, the
cross-sectional heritabilities are roughly equal at both visits, and de-
pending on phenotype, ranging from a low of 0.08 (SPPB physical
performance battery at Visit 2) to a high of 0.55 (for BMI at Visit
2). Most cross-sectional heritabilities are in the 0.30-0.40 range. In
general, the RCM slope heritabilities are substantially higher than the
corresponding OLS slope heritabilities (Table 3). As noted, this is be-
cause the growth curve approach properly models errors in measure-
ment at each time point, whereas the more traditional OLS approach
ignores potential measurement error and takes measurements at face
value, which results in measurement errors accumulating rather than
canceling when looking at the differences between time points. The
increased error in estimating longitudinal change results in loss of
precision and lower heritability for the OLS approach.

920z Asenuer ¢ uo Jasn saueiqi] AlsieAlun BIquiNoD AQ SZ20219/21 L/ . L/e1onie/ABojoluoisBpawolg/woo dno-olwapeoe//:sdiy Woll papeojumoc]


http://academic.oup.com/biomedgerontology/article-lookup/doi/10.1093/gerona/glab333#supplementary-data

724 Journals of Gerontology: BIOLOGICAL SCIENCES, 2022,Vol. 77, No. 4

[ FHS I LLFS [ FHS W LLFS
Males Females Males Females Males Females Males Females
AGE<60 60-80 80-100 >=100 AGE<60 60-30 80-100 >=100 AGE<60 60-80 80-100 >=100 AGE<60 60-80 80-100 >=100 AGE<60 6080 80-100 >-1.00v AGBW 6080 80-100 >=100 AGE<60 6080 80100 >=100 AGE<60 6080 80-100 >=100
Averaqe Max IMT (intima-Media Thickness) Ankle Brachial Index Creatinine (mg/dL) DHEA Sulfate (ug/dL)

.

E

e

E

ST

Dlsease (%) Total Cholesterol (mg/dL)

Insulin Like G‘owth Factor 1 (ngImL)

® wah vl el

: ‘,
: i
: i

LDL Cholesterol (mgldL) HDL Cholesterol (mg/dL)

Frammgham Phy51 | Activity Index Score
(adjusted *)

PR ra—

friglycerides (mg/dL)

P
%

i

i 4

% |+

N m| =
<

E

k‘V‘III
e e e e

e paw wmw e

Fasting Glucose (mg/dL) Glycosylated hemoglobin (%)

Logical Memol IA-DeIayed Total

E

=y

T

Body Mass Index (kglm’)

Dlg_t Span Forward TotaI D|g_t Span

3 w s woam pem

Diastolic Blood Pressure (mmHg)

Average of Loglcal Memory Immediate & Average of D|g|t Span Forward & Backward
Delayed

&
¥
1
H
¥
B

&

e e

Albumin (g/dL

.
i:l '|

£

2

i

[ T ]

E
®
s
.
%
H

Category Fluency-Animals Total

* SLIGHT ACTIVITY hours * 1.5 + MODERATE
ACTMITY hours * 2.4 + HEAVY ACTIVITY hours * 5.0

Figure 1. Comparison of key phenotypes between LLFS and FHS in age/sex groups. Bar heights indicate mean with standard error whiskers comparing LLFS
with FHS in sex/age groups. FHS = Framingham Heart Study (blue). LLFS = Long Life Family Study (red).

Discussion

LLFS is a unique multicenter, multinational resource for discovering
protective alleles and associated biological signatures for Healthy Aging
Phenotypes (HAPs) and Exceptional Longevity (EL) (4,5). No other study
has LLFS’ size and degree of exceptional familial longevity, as fewer than
1% of Framingham Heart Study (FHS) families would meet the EL se-
lection criteria for LLFS (6). LLES cohort is comprehensively and broadly
and deeply phenotyped on all of the major domains of healthy aging.

EvidenceThat LLFS Families Are Healthier than
Average forTheir Age and Sex

In Figure 1, we demonstrate that the LLFS cohort is far healthier
on average than a random sample reference pedigree cohort

(Framingham Heart Study) in many key phenotypes of healthy
aging. In published findings of the cross-sectional Visit 1 data,
LLFS probands and offspring were less likely to have diabetes,
chronic pulmonary disease, and peripheral artery disease than
the Cardiovascular Health Study (CHS) and FHS cohorts (8).
Measures of physical function and cardiovascular risk factors
were on average more optimal in LLFS compared with the other
groups. High-density lipids were higher, and pulse pressure and
triglycerides were lower in LLFS probands and offspring. The per-
ceptual speed task, gait speed, and cognitive function assessed by
the Digit Symbol Substitution Test (DSST) were significantly better
in LLFS (8). LLFS offspring were shown to be cognitively healthier
than spouse controls across a number of different cognitive do-
mains (29,30). Furthermore, Barral et al. (31) showed that the
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exceptional cognition LLFS families are enriched with healthier
metabolic profiles, suggesting that pleiotropic effects of rare al-
leles may be underlying this phenomenon. Ash et al. (32) demon-
strated a lower prevalence of many diseases in LLFS participants
using Centers for Medicare and Medicaid (CMS) data compared
with non-LLFS Medicare beneficiaries, and Singh et al. (33) dem-
onstrated similar findings when comparing LLFS to Health ABC.
In fact, combining all disorders, LLFS participants show increased
health-span compared with population controls and comparable
to centenarians (5).

EvidenceThat Protective Familial Effects in Danish
Families Persist Into the Third Generation

Using the Danish Civil Registration System and parish birth records
(34), we previously identified 3 638 long-lived families with at least
2 living siblings. We interviewed family members and established the
pedigrees of 659 families including the 76 LLFS Danish families. We
obtained the socioeconomic status, all hospitalizations, and causes
of death for offspring and grandchildren of the long-lived siblings
and their 10 age- and sex-matched controls for each offspring and
grandchild via the nationwide Danish registers. Our first analyses
demonstrated that offspring of Danish long-lived siblings had a low
incidence of tobacco-related cancers (35). We then showed that the
offspring as well as their spouses had a lower mortality rate than the
background population (34). Recently, we focused on the grandchil-
dren generation, who exhibited significantly lower mortality (0.60%
in grandchildren vs 0.85% in controls; p = .045) and significantly
lower risk of hospitalization (hazard ratio = 0.9; 0.85-0.97 95% CI)
during childhood (0-15 years) (36). To better understand the mech-
anisms underlying this familial transmission of exceptional health
and survival in 3 generations, we expanded the study, again using the
nationwide Danish registers, and assessed the socioeconomic charac-
teristics of these families and all hospitalizations and causes of death
since the 1970s. Comparing the long-lived siblings and their 5 379
offspring and 10 398 grandchildren to the background population
controls and spouse controls, we found only small economic and
educational differences. However, we consistently noted the lower
occurrence of early parenthood, divorce, and lower rates of virtually
all disease groups in the offspring and grandchildren of long-lived
siblings. We noted that the incidence of hospitalization for mental
and behavioral disorders was lower by approximately half the ex-
pected rate in the offspring (data not shown) and by a quarter in
the grandchildren. Controlling for educational achievements only
changed the estimates marginally for nearly all disease groups in
both generations. Thus, remarkably, the grandchildren generation
appears to also exhibit relatively enhanced healthy aging.

Evidence That LLFS Healthy Aging Phenotypes Are
Heritable, Cross-Sectionally and Longitudinally

We demonstrated in Table 3 that key healthy aging phenotypes in the
LLFS cohort are heritable, both cross-sectionally and longitudinally.
However, as seen in Table 3, the longitudinal heritability is severely
attenuated using a simple “difference between values” (OLS Slope)
way of calculating individual change. In fact, for change calculated
this way, heritabilities are often close to zero. The longitudinal herit-
ability is recovered to nearly the corresponding cross-sectional mag-
nitudes when the longitudinal change is estimated using the Random
Coefficient Models (aka Growth Curves), as detailed in the Method
section and Supplementary Materials. The reason this approach
works better is that it takes into account the fact that each visit data

point is measured with (at least some) error. Because calculating
change between 2 measurements on the same person amounts to a
“distance” between measured values, for such distances, errors of
measurement in the individual data point errors tend to accumulate
in the distance measure, they do not tend to cancel. So the naive way
to calculate “change” is estimated with much more error than each of
the 2 individual values themselves, and this large error overwhelms
the ability to estimate heritability. In fact, several other studies of
longitudinal change in some of these same phenotypes have found
much smaller heritabilities using the simple “change in values” way
of estimating change (37,38). The individual growth curve approach
correctly models these individual measurement errors and reduces
the error in the estimated change, which allows heritability to be
estimated with greater accuracy.

Evidence That LLFS Families Are Heterogeneously
Protected

Although we have demonstrated above that on average the LLFS
cohort is healthier than random cohorts of the same age/sex, they
are not uniformly so. In particular, the pedigrees that show the most
protection in 2 different phenotypic domains are not always the
same ones. For instance, of the 539 LLFS families, we identified 18
as Exceptional Memory families (N = 405 individuals) that showed
significant familial clustering of exceptional verbal episodic memory
(10). On the other hand, we found 44 families (N = 306 individuals)
that showed significant familial clustering for healthy blood pressure
(13). Similarly, 42 families were found to demonstrate significant
clustering for exceptional grip strength and 37 families with ex-
ceptional FEV . There is some, but relatively little, overlap between
exceptional families across different phenotypes, suggesting hetero-
geneous mechanisms of healthy aging (9).

Evidence That Multiple, Rare, Protective Variants

Likely Drive Some HAPs and Longitudinal

Trajectories in Selected LLFS Families

Linkage analysis is used to identify broad genomic regions that may
harbor a causal variant by examining pedigrees in which correspond-
ences between allele sharing identity-by-descent (IBD) and pheno-
type similarity, which is recently regaining interest with the focus
on rare variation (39). We are beginning to conduct nonparametric
linkage analyses of LLFS pedigrees for survival as well as key HAPs.
Initial analyses have produced strong linkage peaks, most notably
for carotid ultrasonography quantitative measures of atherosclerosis
(40). Detailed analyses of these peaks suggest that they are likely
driven by rare, lineage-specific variants, running in select pedigrees.
Three pieces of evidence support this hypothesis. First, very little of
the linkage evidence is accounted for by regressing out all nearby as-
sociated Genome Wide Association Scan (GWAS) or 1000 Genomes
imputed SNPs even if we use very weak thresholds of significance
far below the GW level. The comprehensive density of our 2.5M
GWAS panel (imputed to 38M SNPs) suggests that it is unlikely that
there are very many “hidden” common variants that could have es-
caped tagging or imputing by our dense GWAS and still be driving
these linkage peaks. On the other hand, it is well known that rare
variants are not well tagged by the (mostly) common variants in
GWAS chips, nor are extremely rare ones imputed very accurately
(41). Second, even though these peaks are highly statistically sig-
nificant in all families (eg, Logarithm of the ODDs [LOD] = 5.3
for interadventitial diameter [IAD] on 3q131), the majority of evi-
dence seems to be strongly concentrated in a few, select families, as
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demonstrated by family-specific heterogeneity LOD scores (HLOD)
(42). For example, the IAD HLOD = 7.8 in just 23 of the 539 LLFS
families with carotid ultrasound phenotypes (the remaining fam-
ilies have near-zero or negative HLODs, suggesting that there is no
linkage for them). Given the phenotypic heterogeneity we previously
found in selected pedigrees (above), and the general locus hetero-
geneity of most complex traits, our linkage heterogeneity would
not be surprising. Finally, we can demonstrate through simulation
experiments, that clusters of rare lineage-specific causal variants
segregating in pedigrees can collectively produce a strong linkage
peak, but the signal is completely missed by standard GWAS analysis
(Supplementary Appendix 2). Taken together, these findings sug-
gest that our linkage peaks are driven by relatively few, rare nearly
lineage-specific loci clustered in the same gene or regulatory region,
segregating in a few families with strong linkage evidence, while
the remaining families have zero or negative LOD score evidence
because they do not carry any of the driving rare variants (gener-
ally, families with pedigree-specific LOD scores > 0.2 are the driving
linkage families). Furthermore, the fact that the LLFS cohort is on
average healthier than random cohorts for many phenotypes, and
that the phenotypic heterogeneity we see in LLFS is pedigree-specific
and is manifested by exceptionally favorable HAPs in selected pedi-
grees, suggests that if there are rare variants driving the linkage
peaks, they are likely protective variants. This makes LLFS a poten-
tially powerful platform for rare protective variant discovery.

In summary, LLFS is uniquely positioned to discover genetic and
other factors related to longevity and exceptional “health span” and
the mechanisms that contribute to them. The role of rare genetic
variants in longevity and exceptional health span has not been thor-
oughly examined. To date, replicated associations of common vari-
ants with longevity have been few and their effect sizes have been
modest. It is now clear that rare variants are numerous and many
are of recent origin (43-45) and that family studies show particular
promise in discovering these (46). LLFS has developed a strategy to
utilize its family genetic data efficiently and intensively to identify
both coding and regulatory variants that contribute to EL and/or
HAPs.

Future Directions

LLFS has recently obtained funding to continue annual follow-up and
conduct a third longitudinal in-person visit of all participants. Visit 3
will repeat all Visit 2 measurements and protocols and add a few new
ones, including formal dementia diagnosis and dietary assessment. In
Visit 3, we will also recruit members from the grandchildren gener-
ation in selected pedigrees where we have strong LOD score linkage
evidence for key HAPs. Whole-genome sequencing will be done on
all pedigrees and participants, and metabolomics (via mass spectrom-
etry) will be done longitudinally on all participant samples, including
stored blood from Visits 1 and 2, as well as new blood collected for
Visit 3. Other OMICs will also be done longitudinally on samples
from Visits 1, 2, and 3, in selected pedigrees showing strong evidence
for linkage for key HAPs. These include transcriptomics (RNA-seq),
epigenomics (Whole-Genome Bisulfate Sequencing), and proteomics
(either SOMAScan or mass spectrometry, depending on the results of
harmonization efforts across sister studies of longevity and healthy
aging). These will allow us to better identify the rare causal variants
that appear to be running in selected LLFS pedigrees and, more im-
portantly, identify the genes of action and the biological mechanisms
behind the protection. Finally, an important advantage afforded by
the LLFS family design is that we have obtained a sample of younger

participants (in the offspring, and soon, the grandchildren) that ap-
pear to be enriched for protection in many dimensions. They may
(or may not) ultimately manifest extreme longevity, but they are an
important sample for longitudinal tracking, as they may provide a
mechanism for prospective discovery of protective biomarkers and
signatures, and for understanding the interplay of exposures, lifestyle,
and biology in the etiology of healthy aging and longevity.

Supplementary Material

Supplementary data are available at The Journals of Gerontology,
Series A: Biological Sciences and Medical Sciences online.
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