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SUMMARY
We analyze familial correlation of a memory score from Caribbean Hispanic families that have
multiple family members affected with Alzheimer’s disease, adjusting for having at least 1 APOE-
ε4 allele, as well as other confounders. To enhance the efficiency of correlation model, this paper
proposes an alternative approach for three generalized estimating equations proposed by Yan and
Fine [1]. The efficiency of correlation model is evaluated through the asymptotic relative efficiency
computation and simulations.

1. INTRODUCTION
Researchers investigating the genetics of common diseases have been examining
subcomponents of the clinical entity of their interest to better understand the underlying
mechanism. This is possible because investigators routinely obtain information on many
subcomponents to make accurate diagnosis. In our example, investigators conducting a genetic
study of familial Alzheimer disease (AD) measure many cognitive functions, including
memory scores, to help the diagnosis of AD. Given that AD is a multifactorial disease, there
are likely to be multiple genetic and environmental factors involved in the disease process, and
each factor by itself will have limited influence on the clinical endpoint. On the contrary,
memory impairment precedes the onset of AD by several years and is a strong predictor of
subsequent AD, which can be considered closer to the action of the gene influencing on AD;
moreover, since it is measured continuously, a wide range of memory performance in
unaffected as well as affected individuals can be used to measure the influence of genetic
variants with weak to modest effects [2-5]. Thus, one can expect to enhance power to detect
the relationship between genes and AD by examining memory scores, and there has been
increasing attention to characterize genetic component in memory to better understand the
genetics of AD [6-7].

Genetic studies of memory can start from investigating whether or not pairwise correlations
for memory scores among family members (familial correlation) are greater than those for
genetically unrelated people. Like other genetic analyses, the estimation of familial correlation
is complicated by multiple non-genetic factors within each individual. For example, regardless
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of sharing genes, memory scores decline with age and are higher for individuals with higher
levels of education, and greater differences in age or education between two family members
would make lower familial correlations in a memory score. Moreover, apolipoprotein E ε4
(APOE-ε4) allele has been shown to be associated with AD consistently across different
populations, which is only one genetic variant known to date [8-9]. Since our data are from
AD families with multiple affected individuals, elevated familial correlations in memory could
have resulted from having excess APOE-ε4 alleles. Therefore, using a regression model, we
want to analyze familial correlations of a memory score after controlling for the influence of
APOE-ε4 allele, as well as other non-genetic confounders.

For a regression model for correlations, Ziegler et al. [10] proposed a joint modelling of mean
and correlation adopting the Generalized Estimating Equation (GEEs) for covariance
parameters proposed by Prentice and Zhao [11], which extends the GEEs for mean parameters
by Liang and Zeger [12]. Yan and Fine [1] added a variance model and proposed a joint
modelling of mean, variance and correlation. However, as described in Reference [1], a
misspecified correlation structure among 3GEEs can reduce the efficiency of the GEE
estimators. In this paper, we first propose an alternative 3GEEs improving efficiency for the
correlation model, and then compare its performance with Yan and Fine’s 3GEEs. We then
analyze familial correlations of total recall memory score to examine the genetic influence
remained after controlling for the APOE gene along with other non-genetic confounders.
Section 2 presents the efficient 3GEEs, specifically for the correlation model. In Section 3, we
evaluate the efficiency of the proposed 3GEEs through the asymptotic relative efficiency
(ARE) and the relative efficiency (RE) of Yan and Fine’s 3GEEs with respect to the proposed
3GEEs. Section 4 shows the familial correlation analysis of a memory score from Hispanic
AD families, adjusting for APOE-ε4 allele, as well as age, education time and gender. A
discussion concludes in Section 5.

2. Proposed 3GEEs
In this section, we propose an alternative 3GEEs by specifying the covariance structure among
3GEEs.

For the ith unit, Yi is the ni × 1 outcome vector Yi = (Yi1 · · · Yini). Let X1i, X2i and X3i be the

ni × p covariate matrix for the mean, ni × q covariate matrix for the scale, and 
covariate matrix for the correlation of outcomes, respectively. Note that while X1i and X2i are
determined for each individual, X3i is determined for pairs in the ith unit. The three models for
the mean, scale and correlation of unit i are as follows:

where E(Yij|X1ij) = μij and V ar(Yij|X2ij) = ϕijνij, j = 1 · · · ni. The ϕij is the scale of outcome
given X2ij; the variance function νij is a function of μij, which is also a function of X1ij. The
Corr(Yij, Yij’|X3ijj’) = ρijj’, that is, ρijj’ is the correlation of outcomes given X3ijj’ for j ≠ j’ = 1 ·

· · ni. The g(·) is the link function for each model. While E(sij|X2ij) = ϕij when 

for the jth member, E(zijj’|X3ijj’) is also asymptotically ρijj’ when 
for a pair (j, j’).
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Following the framework by Reference [11], we generalize the GEE for the parameter θ = (β,
γ, α) as follows:

(1)

where , , and . The  is the

ni × p matrix whose component is , j = 1, · · · , ni, k = 1, · · · , p,  is the ni × q matrix

whose component is , j = 1, · · · , ni, k = 1, · · · , q, and  is the  matrix whose

component is , j ≠ j’ = 1, · · · , ni, k = 1, · · · , r. The ni × 1 vector si has the jth component,

, and the  vector zi has the component for (j, j’),

.

As discussed in Reference [11], ,  and  in the equation (1) are reasonable to be a zero
matrix to make the parameter estimators robust to covariance misspecification. However, off
diagonal blocks of Vi do not have to be set to zero since si and zi are asymptotically unbiased
estimators for ϕi and ρi, respectively. As a working covariance, the choice of Vi may not affect
the consistent estimation of parameters, but the efficiency of estimators can be improved by
choosing an appropriate form. An intuitive approach for the choice of Vi is to consider the
normality of Yi = (Yi1, · · · , Yini). This assumption does not mean that the outcomes should be
distributed as a multivariate normal for the analysis. Rather, this anticipates that the variance
structure from a multivariate normal distribution may increase the efficiency by incorporating
the covariance structure among Yi, si and zi. Appendix I.1 includes the covariance structure of
(Yi, si, zi) from the multivariate normality.

Incorporating that V12i and V13i are zero matrices, a generalized 3GEEs can be written as
follows:

(2)

where , ,  and

. While the 3GEEs by reference [1] is a special
case of the equation (2) when V23i is chosen as zero matrix, V22i as the diagonal matrix with
the diagonal elements of Cov(si, si) and V33i as the identity matrix, our proposed 3GEEs
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implements , V22i = Cov(si; si) and V33i as a diagonal matrix with the diagonal
elements of Cov(zi, zi), where Cov(si, si), Cov(si, zi) and Cov(zi, zi) are from the normality as
obtained in Appendix I.1. In our proposed 3GEEs, as opposed to Yan and Fine’s, V23i was
chosen to suffice the condition V ar(α) > 0, and V33i to improve the efficiency and simplify the
estimation procedure. Note that the choice of V11i does not affect the efficiency for correlation
model.

The sandwich variance of the proposed 3GEEs is shown in Appendix I.2. The variance of α is

a set of corresponding diagonal elements of :

where W0, W1, C, D, F, G, e, f, h and i are as defined in Appendix I.2. However, implementing
sandwich variance can be a drawback when the number of samples is less than 50, especially
with binary outcomes, as discussed elsewhere [14].

3. Efficiency of 3GEEs
In this section, we evaluate the efficiency of 3GEEs through the ARE and simulations.

3.1. Asymptotic relative efficiency
The ARE of Yan and Fine’s 3GEEs with respect to the proposed 3GEEs is defined as the ratio

of the set of diagonal elements corresponding to correlation parameter α of 
from the efficient 3GEEs to that from Yan and Fine’s 3GEEs. Considering outcome vector
from a bivariate normal distribution with zero means and unit variances, figure 1 displays the
relationship between AREs and correlations distributing from 0 to 1, when true covariances
among 3GEEs are from the given bivariate normal distribution. This shows that the efficiency
gain is greater in stronger correlations. For example, when correlation is 0.5, the efficiency
gain from using the proposed 3GEEs is greater than 50% when the outcome is from the given
bivariate normal distribution.

3.2. Simulation study
Through simulations, we evaluate the efficiency of the proposed 3GEEs in the extended length
of outcome vector and additional pair specific covariate adjustments to mimic our data.

Outcome vector was generated from a multivariate normal of length 6 with zero means and
marginal variances of 1. The correlation matrix is given as follows: ρ1=Corr(Yi3, Yi6) = Corr
(Yi4, Yi6) = Corr(Yi5, Yi6) = 0; ρ2=Corr(Yi1, Yi2) = Corr(Yi1, Yi3) = Corr(Yi1, Yi4) = Corr(Yi2,
Yi3) = 0.125; ρ3=Corr(Yi1, Yi5) = Corr(Yi1, Yi6) = Corr(Yi2, Yi4) = Corr(Yi2, Yi5) = 0.25; ρ4=Corr
(Yi2, Yi6) = Corr(Yi3, Yi4) = Corr(Yi3, Yi5 = Corr(Yi4, Yi5) = 0.5. Sharing of genes identical by
descent (i.e., genes from some common ancestor) is expected to be, on average, 0.5 for first-
degree relative pairs, 0.25 for second-degree relative pairs, 0.125 for third-degree relative pairs
and 0 for unrelated pairs. Hence, the data generation implies that we generate a family with 6
members, which includes 4 pairs each from the first to the third degree relatives and 3 unrelated
pairs. We considered two types of outcomes: 1) continuous outcome from multivariate normal
distribution with the above correlation matrix and 2) binary outcome indicating an underlying
variable from normality less than 1. For 2), to have the above correlation matrix, we generated
the underlying data from multivariate normal distribution with replacing the correlations 0,
0.125, 0.25 and 0.5 with 0.05, 0.26, 0.46 and 0.77, respectively. Moreover, to account for the
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influence of shared and non-shared environment, we considered two types of additional pair
specific covariates for the correlation model: 1) Continuous X1 from N(0,1); 2) Dichotomous
X2 (0 or 1) with P(X2 = 1) = 0.3. Four models to estimate each correlation parameter were
investigated: Model1 unadjusted; Model2 adjusted for X1; Model3 adjusted for X2; and Model4
adjusted for X1 and X2. Since this paper focuses on estimating correlations for continuous
outcomes, the following link functions were used: g1(μi) = μi; g2(ϕi) = ϕi; and g3(ρi) =
tanh-1(ρi). Intercept model was used for the mean and scale. In each model, we ran 500 times
with 100 families.

We examined the RE of Yan and Fine’s 3GEEs with respect to the proposed 3GEEs. The REs
were obtained from the ratio of the simulation variance of estimates from the efficient 3GEEs
to that from Yan and Fine’s 3GEEs for given correlations. Table I presents the results. For
continuous data from multivariate normal distribution, the proposed 3GEEs was efficient in
almost all situations. The efficiency gain was greater for stronger correlations or in bigger
models. We also notice that the efficiency gain can be greater in smaller dimension of outcomes.
For example, for 0.5 correlation, the efficiency gain was 25% in unadjusted model1 for this 6
× 1 outcome vector, as opposed to 50% gain in ARE for 2 × 1. For binary data, there was no
big difference between two different 3GEEs. In unadjusted Model1, Yan and Fine’s 3GEEs
performed a little better, but in bigger models, the proposed 3GEEs retained the advantage.

4. Familial correlation analysis using 3GEEs
In this section, for Hispanic AD families, we analyze familial correlations for sibling, second
degree (e.g., grand parent-grandchild, half sibs and uncle-nephews), third degree (e.g., first
cousins) and other types of relative pairs.

Detailed description of the neuropsychology battery was presented elsewhere [5-6]. Selective
Reminding Test (SRT) to assess verbal memory and dementia was used to help the diagnosis
of AD. The tests were performed on all family members in Spanish. In this test, subjects were
administered six trials in which they were given a list of 12 unrelated words to memorize. After
each attempt at recalling the list, the subject was reminded only of the words that were not
recalled and then asked to recall the entire list. Total recall score was measured at this stage
(max score=72, failure<25).

The study of familial AD in Caribbean Hispanics included 210 families and 1078 individuals
with memory score data [13]. Each family had at least 2 AD patients. These families were
collected from multiple sources, including clinics in the Dominican Republic and in Puerto
Rico, the Alzheimer’s Disease Research Center-Memory Disorders Center, and doctor’s
private offices in the Department of Neurology and the General Medical Services at Columbia
University. In this sample, women were 66%. The mean age was 71 years (SD=13), and the
mean time of education was 7 years (SD=6). The 40% of them had 1 APOE-ε4 and 10% had
2 APOE-ε4 alleles. As shown in Table II, the distribution of total recall score is skewed to the
right, so the normality assumption may not be reasonable for the analysis. Unlike other
likelihood approaches, since our model can be relaxed from the normality assumption,
employing 3GEEs can take advantage to estimate familial correlations. The mean age
difference in pairs was 12 years (SD=10), and the mean difference in years of education was
4 years (SD=4).

Table III includes simple estimates of familial correlation for each relative type, using
Pearson’s correlation. If genes were to influence memory, we expect familial correlations to
be significantly different from zero, and we may further expect the correlations to be higher
for genetically closer relatives compared with the correlations for more distant relatives. In
overall estimations, correlations were not strong other than sibling pairs, but they increased
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when the age or education difference was small. When stratified by whether or not they have
APOE-ε4 allele identity by state (i.e., APOE-ε4 allele not necessarily from the same ancestor),
correlations were similar for sibling and third degree relative pairs, but greater for second
degree relative pairs in the group sharing APOE-ε4 alleles.

We implement the 3GEEs to estimate familial correlations adjusting for these subject and pair
specific confounders. Both Yan and Fine’s and proposed 3GEEs were applied. For the mean
model, we adjusted for gender, age in years, years of education time and the number of copies
of APOE-ε4 alleles. Intercept model was used for scale parameter, and three models were used
for correlation parameters. Model1 examined familial correlations adjusting for subject
specific confounders only. Model2 adjusted for differences in age, education and gender, in
addition to subject specific confounders in the Model 1. Hence, the Model2 produces familial
correlations if there were no differences in age, education level and gender in pairs. In addition
to adjusting for subject and pair specific confounders in the Model2, Model3 adjusted for the
indicator of having at least 1 APOE-ε4 allele in identity by state. We used the Model3 to
investigate the residual genetic influence in memory remained after considering the effect of
APOE-ε4 allele. Table IV presents the regression familial correlation analysis. From the mean
model, we found that older age, lower level of education and presence of the APOE-ε4 allele
significantly reduced total recall memory score. The estimates for scale parameters were almost
identical for both 3GEEs. The proposed 3GEEs was efficient for correlation models, but for
third degree relative pairs, Yan and Fine’s 3GEEs produced smaller variance estimates.
Efficiency gain for correlation parameters was greater when we included additional pair
specific confounders in the model. However, the efficiency gain was not very striking, which
it can be due to relatively small correlations or non-normality in this data. We indeed found
stronger p-values in using efficient 3GEEs, but it could be mostly because the correlation
estimates were greater than those from Yan and Fine’s 3GEEs. In the Model1, familial
correlation for sib pairs was significantly different from zero and decreased as relationships
became more distant. When non-genetic differences in pairs were adjusted in the Model2,
familial correlations for second degree relative pairs became stronger than ones for sib pairs
and became significant. This is likely to be due to the fact that second degree relative pairs
include grandparent-grandchild and uncle-nephews, where the differences in age or education
level are greater than those for other types of relationships. In the Model3, familial correlations
for sibling and second degree relative pairs remained significant and we found the same
tendency for all relationships, although the effect sizes were somewhat smaller than ones from
the Model2. Therefore, this regression familial correlation analysis suggests that additional
genetic factors-independent of the APOE gene-are likely to be present for the memory
measured by total recall score.

5. Discussion
In this paper, we proposed an alternative 3GEEs for correlation model from a generalization
of 3GEEs. Both the proposed 3GEEs and Yan and Fine’s 3GEEs are obtained by specifying
certain types of working covariances in the generalized 3GEEs. The proposed model
considered correlations among 3GEEs, and the choice of working correlations was motivated
from the multivariate normality. However, the proposed 3GEEs do not require the normality
of an outcome but just employ the properties from the normality. Through ARE and
simulations, we showed that the efficiency gain from the proposed 3GEEs was greater for
stronger correlations and models including additional pair specific covariates, but the
efficiency gain was not impressive with binary outcomes.

Using both 3GEEs, we analyzed familial correlations adjusting for non-genetic differences, as
well as the APOE gene in Hispanic AD families. Since correlation estimates were not strong
in our data, using the proposed 3GEEs over Yan and Fine’s 3GEEs did not seem to be
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significantly beneficial. However, when the model includes additional pair specific
confounders, our proposed model is recommended. In our analysis, the sandwich variance
estimates were used. Under 3GEEs model, we observed that there is a support for presence of
additional genetic factors, other than APOE gene, after controlling for subject and pair specific
confounders.

Further studies are needed to yield unbiased estimates. The parameter estimates using the
proposed 3GEEs are less likely to be comparable to population based parameter estimates,
given that these families were chosen because they have multiple affected family members.
Hence, an adjustment to the 3GEEs should be considered to produce an unbiased estimator. In
addition, since familial correlation is one of the fundamental analytic tools in quantitative
genetics, this regression approach can be utilize in various types of genetic analyses.
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Appendix

APPENDIX

I.1. Covariance structure among three GEEs from multivariate normality
Each component of Vi has the following correspondence: V11i = Cov(Yi, Yi), V12i = Cov(Yi,
si), V13i = Cov(Yi, zi), , V22i = Cov(si, si), V23i = Cov(si, zi), , , and
V33i = Cov(zi, zi). The factors for the calculation of each component of Vi are summarized by
assuming Yij ∼ N(μij, ϕij) and Corr(Yijj, Yijj’) = ρijj’.

1. The Cov(Yi, si) is a zero matrix, since Cov(Yij, sij) = E(Yij - μij)3 = 0, and Cov(Yij,
sij’ = E(Yij - μij)(Yij’ - μij’)2 = 0, for j ≠ j’ = 1, · · · , ni.

2. The Cov(Yi, zi) is also a zero matrix, since

 and

 for j ≠ j’ ≠ k = 1, · · · ,
ni.

3.
For the Cov(si, si) where j ≠ j’ = 1, · · · , ni, ,

where ,

, where

.

4. For the Cov(si, zi) where j ≠ j’ ≠ k = 1, · · · , ni,

, where

;
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,

where .

5. For the Cov(zi, zi) where j ≠ j’ ≠ k ≠ l = 1, · · · , ni,

;

;

, where

.

Hence, when the covariance structure from the normality assumption for Yi = (Yi1, · · · , Yini)
is incorporated, the Vi can have the following form:

I.2. Sandwich Variance

The sandwich variance of the parameter estimates is formulated as  for the
efficient 3GEEs. Note that the si for the scale model depends on the mean parameter β, while
the zi for the correlation model depends on the mean parameter β and scale parameter γ.

The W0 is defined as follows:

From the equation (2), the W0 can be expressed as follows:

where , , ,

, , , and

. Also, the jth component of  is
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the component for the pair (j, j’) of  is

and the component for the pair (j, j’) of  is

The W1 is defined as follows:

From this, the W1 can be expressed as follows:

where ,

,

, d = b’,

,

, and

.

All components for W0 and W1 are replaced by the estimates from 3GEEs. The estimators of
V ar(a) and Cov(a, b) are {a - E(a}{a - E(a)}’ and {a - E(a)}{b - E(b)}’, respectively.
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Figure 1.
Asymptotic relative efficiencies (AREs) for parameter estimates from correlation model of
Yan and Fine’s 3GEEs with respect to efficient 3GEEs
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