

NIH Public Access

Author Manuscript

Arch Neurol. Author manuscript; available in PMC 2011 May 3.

Published in final edited form as:

Arch Neurol. 2011 January ; 68(1): 99–106. doi:10.1001/archneurol.2010.346.

Meta-analysis of the Association Between Variants in *SORL1* and Alzheimer Disease

Dr. Christiane Reitz, MD, PhD, Dr. Rong Cheng, PhD, Dr. Ekaterina Rogaeva, PhD, Dr. Joseph H. Lee, DrPH, Dr. Shinya Tokuhiro, PhD, Dr. Fanggeng Zou, PhD, Dr. Karolien Bettens, PhD, Dr. Kristel Sleegers, MD, PhD, Dr. Eng King Tan, MD, FRCP, Dr. Ryo Kimura, PhD, Dr. Nobuto Shibata, MD, Dr. Heii Arai, MD, PhD, Dr. M. Ilyas Kamboh, PhD, Dr. Jonathan A. Prince, PhD, Dr. Wolfgang Maier, MD, Dr. Matthias Riemenschneider, MD, Dr. Michael Owen, PhD, FRCPsych, FMedSci, Dr. Denise Harold, PhD, Dr. Paul Hollingworth, PhD, Dr. Elena Cellini, PhD, Dr. Sandro Sorbi, MD, Dr. Benedetta Nacmias, PhD, Dr. Masatoshi Takeda, MD, PhD, Dr. Margaret A. Pericak-Vance, PhD, Dr. Jonathan L. Haines, PhD, Dr. Steven Younkin, MD, PhD, Dr. Julie Williams, PhD, Dr. Christine van Broeckhoven, PhD, DSc, Dr. Lindsay A. Farrer, PhD, Dr. Peter H. St George-Hyslop, MD, and Dr. Richard Mayeux, MD, MSc for the Genetic and Environmental Risk in Alzheimer Disease 1 Consortium

The Taub Institute for Research on Alzheimer's Disease and the Aging Brain and the Gertrude H. Sergievsky Center (Drs Reitz, Cheng, Lee, Kimura, and Mayeux), and Departments of Neurology (Drs Reitz and Mayeux) and Psychiatry (Dr Mayeux), College of Physicians and Surgeons, and Department of Epidemiology, School of Public Health (Drs Cheng, Lee, and Mayeux), Columbia University, New York, New York; Centre for Research in Neurodegenerative Diseases, University of Toronto (Drs Rogaeva, Tokuhiro, and St George-Hyslop) and Department of Medicine, University Health Network (Dr St George-Hyslop), Toronto, Ontario, Canada; Genetics Program, Department of Medicine and Departments of Neurology, Genetics and Genomics, Epidemiology, and Biostatistics, Boston University Schools of Medicine and Public Health, Boston, Massachusetts (Dr Farrer); Neurodegenerative Brain Diseases Group, the Vlaams Instituut voor Biotechnologie Department of Molecular Genetics and Laboratory of Neurogenetics, Institute

© 2011 American Medical Association. All rights reserved.

Correspondence: Richard Mayeux, MD, MSc, Gertrude H. Sergievsky Center, Columbia University, 630 W 168th St, New York, NY 10032 (rpm2@columbia.edu).

Author Contributions: Drs Reitz, Mayeux, Rogaeva, Tokuhiro, Kimura, Shibata, Arai, Prince, Riemenschneider, Pericak-Vance, Van Broeckhoven, Farrer, St George-Hyslop, and Mayeux had full access to all the data in the study and take responsibility for the integrity of the data and the accuracy of the data analysis. *Study concept and design:* Reitz, Cheng, Riemenschneider, Takeda, Haines, Farrer, St George-Hyslop, and Mayeux. *Acquisition of data:* Reitz, Rogaeva, Tokuhiro, Zou, Bettens, Sleegers, Tan, Kimura, Shibata, Arai, Kamboh, Prince, Maier, Riemenschneider, Owen, Harold, Hollingworth, Cellini, Sorbi, Nacmias, Pericak-Vance, Haines, Younkin, Williams, Van Broeckhoven, Farrer, St George-Hyslop, and Mayeux. *Analysis and interpretation of data:* Reitz, Cheng, Lee, Tan, Shibata, Arai, Prince, Pericak-Vance, Haines, Younkin, and Mayeux. *Drafting of the manuscript:* Reitz, Cheng, Lee, Cellini, Takeda, Van Broeckhoven, and Mayeux. *Critical revision of the manuscript for important intellectual content:* Rogaeva, Tokuhiro, Zou, Bettens, Sleegers, Kimura, Shibata, Arai, Kamboh, Prince, Maier, Riemenschneider, Owen, Harold, Hollingworth, Sorbi, Nacmias, Takeda, Pericak-Vance, Haines, Younkin, Williams, Farrer, St George-Hyslop, and Mayeux. *Statistical analysis:* Reitz, Cheng, Lee, Prince, Riemenschneider, Harold, Pericak-Vance, Haines, Farrer, and Mayeux. *Obtained funding:* Rogaeva, Tan, Kamboh, Prince, Riemenschneider, Hollingworth, Sorbi, Nacmias, Takeda, Pericak-Vance, Haines, and St George-Hyslop. *Administrative, technical, and material support:* Tokuhiro, Zou, Tan, Shibata, Arai, Kamboh, Maier, Riemenschneider, Owen, Hollingworth, Cellini, Sorbi, Nacmias, Takeda, Haines, Younkin, and Farrer. *Study supervision:* Rogaeva, Maier, Takeda, Pericak-Vance, and St George-Hyslop.

Financial Disclosure: None reported.

Online-Only Material: The eFigures and eTable are available at <http://www.archneurol.com>.

Additional Contributions: The National Medical Research Council in Singapore, the Singapore General Hospital, the Singapore Millennium Foundation, and the Singapore staff assisted in the sample collection. We acknowledge the work of Julie Williams, PhD, for the GERAD1 Consortium.

Born-Bunge, University of Antwerp, Antwerpen, Belgium (Drs Bettens, Sleegers, and Broeckhoven); Department of Neurology, Singapore General Hospital, Singapore, Singapore (Dr Tan); Department of Psychiatry, Osaka General Medical Center and Department of Psychiatry, Osaka University Graduate School of Medicine (Dr Takeda), Osaka, and Department of Psychiatry, Juntendo University School of Medicine, Tokyo, Japan (Drs Shibata and Arai); Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, School of Medicine, Cardiff University, Cardiff, Wales (Drs Owen, Harold, Hollingworth, and Williams); Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden (Dr Prince); Department of Psychiatry, University of Bonn, and Deutsches Zentrum für Neurodegenerative Erkrankungen, Bonn (Dr Maier) and Eurochemistry and Neurogenetics Laboratory, Department of Psychiatry and Psychotherapy, Technische Universität München, Munich, Germany (Dr Riemenschneider); Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania (Dr Kamboh); Cambridge Institute for Medical Research, University of Cambridge, Cambridge, England (Dr St George-Hyslop); National Neuroscience Institute, Duke—National University of Singapore Graduate Medical School, Singapore, Singapore (Dr Tan); Departments of Neuroscience and Neurology, Mayo Clinic Jacksonville, Jacksonville, Florida (Drs Zou and Younkin); Miami Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, Florida (Dr Pericak-Vance); Departments of Neurological and Psychiatric Sciences (Dr Cellini) and Neurological and Psychiatric Sciences (Drs Sorbi and Nacmias), University of Florence, Florence, Italy; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan (Dr Takeda); and Center for Human Genetics Research, Vanderbilt University School of Medicine, Nashville, Tennessee (Dr Haines)

Abstract

Objective—To reexamine the association between the neuronal sortilin-related receptor gene (*SORL1*) and Alzheimer disease (AD).

Design—Comprehensive and unbiased meta-analysis of all published and unpublished data from case-control studies for the *SORL1* single-nucleotide polymorphisms (SNPs) that had been repeatedly assessed across studies.

Setting—Academic research institutions in the United States, the Netherlands, Canada, Belgium, the United Kingdom, Singapore, Japan, Sweden, Germany, France, and Italy.

Participants—All published white and Asian case-control data sets, which included a total of 12 464 cases and 17 929 controls.

Main Outcome Measures—Alzheimer disease according to the *Diagnostic and Statistical Manual of Mental Disorders* (Fourth Edition) and the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer's Disease and Related Disorders Association (now known as the Alzheimer's Association).

Results—In the white data sets, several markers were associated with AD after correction for multiple testing, including previously reported SNPs 8, 9, and 10 ($P<.001$). In addition, the C-G-C haplotype at SNPs 8 through 10 was associated with AD risk ($P<.001$). In the combined Asian data sets, SNPs 19 and 23 through 25 were associated with AD risk ($P<.001$). The disease-associated alleles at SNPs 8, 9, and 10 (120 873 131-120 886 175 base pairs [bp]; C-G-C alleles), at SNP 19 (120 953 300 bp; G allele), and at SNPs 24 through 25 (120 988 611 bp; T and C alleles) were the same previously reported alleles. The SNPs 4 through 5, 8 through 10, 12, and 19 through 25 belong to distinct linkage disequilibrium blocks. The same alleles at SNPs 8 through 10 (C-G-C), 19 (G), and 24 and 25 (T and C) have also been associated with AD endophenotypes, including white matter hyperintensities and hippocampal atrophy on magnetic resonance imaging,

cerebrospinal fluid measures of amyloid β -peptide 42, and full-length *SORL1* expression in the human brain.

Conclusion—This comprehensive meta-analysis provides confirmatory evidence that multiple *SORL1* variants in distinct linkage disequilibrium blocks are associated with AD.

The neuronal sortilin-related receptor gene (*SORL1*) is a susceptibility gene for late-onset Alzheimer disease (AD),^{1–7} is located on chromosome 11q23.2-q24.2, and encodes a 250-kDa membrane protein expressed in neurons of the central and peripheral nervous system.⁸ The biological evidence for a role of *SORL1* in AD is compelling: *SORL1* is part of the VPS10 vacuolar protein–sorting receptor family,^{9,10} which in turn belongs to a group of protein-trafficking molecules in the endocytic and retromerpathways.^{9,10} These subcellular domains are important sites for the generation of the amyloid β -peptide (A β), the main putative culprit in AD. In patients with AD and persons with the amnesic form of mild cognitive impairment, an early stage of AD, the expression of *SORL1* is reduced in neurons but not glia in the brain.^{11,12} However, this reduction is not a consequence of AD because *SORL1* expression is not altered in patients with presenilin 1 mutations.^{11,12} Cell biological experiments suggest that underexpression of *SORL1* modulates amyloid precursor protein processing, leading to overproduction of A β .⁶

We previously explored a series of 29 *SORL1* SNPs, which we referred to by sequential numbers (SNPs 1–29).⁶ Information with regard to numbering, location, orientation, and type of these SNPs is given in Table 1. We identified 2 clusters of SNPs in the 3' and 5' ends of *SORL1* that were associated with familial and sporadic forms of AD: (1) SNPs 8 through 10 (alleles C-G-C; 120 873 131-120 886 175 base pairs [bp]) in the 5' end of the gene among Caribbean Hispanics (family study), whites (case-control study), and Israeli Arabs (case-control study) and (2) SNPs 22 through 25 (alleles T-T-C; 120 962 172-120 988 611 bp) in the 3' end of the gene among multiple white samples (family and case-control studies) and African Americans (family study). In that study we reported that suppression of *SORL1* led to elevation of A β levels in human embryonic kidney cells.⁶ Twelve studies^{1–4,7,13–19} among different ethnic groups subsequently replicated the association of AD with clusters of SNPs in the same 2 regions of *SORL1* and with different AD-associated allelic variants in other ethnic groups. However, 6 studies reported weak or no association with AD.^{5,20–24}

There are several potential explanations for the different results among studies. Alzheimer disease is complex; thus, it is possible that multiple different pathogenic variants occur across multiple domains of *SORL1* (allelic heterogeneity), that the causative variants are absent or underrepresented in some data sets (locus heterogeneity), or that the effect of genetic variation in *SORL1* on AD risk is not large enough to be detected across multiple data sets. In fact, among the negative studies, Lietal²⁰ performed a 2-stage genome-wide association study first examining 753 case individuals and 736 control individuals in Canadian samples and then further examining the top 120 candidate SNPs using 418 cases and 249 controls from a United Kingdom Medical Research Council data set. The investigators had 48 SNPs in *SORL1* but did not observe an association with AD. In a separate study, Li et al⁵ examined 3 sets of cases and controls totaling approximately 2000 samples from the United Kingdom or the United States. They found a weak association for *SORL1* SNPs 19 ($P=.04$) and 24 ($P=.02$) for the first UK data set but no association when all 3 data sets were combined. On close reexamination, SNPs 19 and 24 were weakly associated with AD in 2 of 3 data sets. The SNP associations in the second UK data set differed from those for the other 2 data sets (first UK data set and Washington University School of Medicine), suggesting that sampling heterogeneity may have affected the results. Shibata et al²³ initially reported that the assessed variants in *SORL1* were not associated with AD in a Japanese cohort comprising 180 cases and 130 age-matched controls, but a subsequent reanalysis found associations of SNPs 8 and 24, supporting a role of *SORL1* in AD.²⁵

The objective in the present study was to reexamine the association between *SORL1* and AD by performing a comprehensive and unbiased meta-analysis of all published and unpublished data from case-control studies for the *SORL1* SNPs that had been repeatedly assessed across studies (ie, SNPs 4, 5, 8, 9, 10, 12, 19, and 22–25). The combined data sets provided sufficient statistical power to validate the association and to identify SNPs worthy of further investigation. We focused the meta-analyses on white and Asian populations because multiple data sets were available in these ethnic groups. We excluded 3 case-control data sets from African Americans,³ Caribbean Hispanics,⁶ and Israeli Arabs⁶ because there was only 1 data set each available for these ethnic groups and thus we could not perform separate meta-analyses.

METHODS

SELECTION OF STUDIES

The primary sources of the studies addressing the risk for AD associated with the *SORL1* gene polymorphisms were the AlzGene database (updated September 1, 2009) and the PubMed database. The keywords used for searching PubMed were *SORL1*, *SORLA*, *LR11*, *Alzheimer disease*, and *Alzheimer's disease*. The retrieved abstracts were read to identify studies examining the genotype association between SNPs within the *SORL1* gene and AD. We also performed a manual search of references cited in published articles. The studies were read in their entirety to assess their appropriateness for inclusion in the meta-analysis. Criteria for the inclusion in the analysis were diagnosis of AD according to the *Diagnostic and Statistical Manual of Mental Disorders* (Fourth Edition) and the National Institute of Neurological Disorders and Stroke–Alzheimer Diseases and Related Disorders Association Working Group criteria²⁶; genotyping data for *SORL1* SNPs 4, 5, 8, 9, 10, 12, 19, and 22 through 25; case-control study design; and control population in Hardy-Weinberg equilibrium. We did not include studies that imputed SNP data. This led to inclusion of all published white* (n=14) and Asian (n=3) data sets.^{15,18,23} In addition to the published studies, 1 white study²⁸ was included in which the authors had obtained the SNP genotypes but had not published those specific results. Autopsy confirmation was available in 1 study.² One Israeli Arab,⁶ 1 Caribbean Hispanic,⁶ and 1 African American³ case-control study were eliminated because of lack of additional case-control data sets in these ethnic groups.

GENOTYPING AND STATISTICAL ANALYSES

Genotyping methods for each data set are described in the original publications.^{1–3,5,6,15–18,23} We performed separate meta-analyses of the white and Asian data sets. To determine the strength of associations between the individual *SORL1* SNPs and AD, we calculated a pooled odds ratio (OR) for each marker using fixed- and random-effects models as implemented in PLINK. We first performed meta-analyses of unadjusted results from the individual data sets and then repeated the meta-analyses using the results from the individual data sets adjusted for age, sex, and apolipoprotein E (*APOE*) genotype. The *P* values for each SNP were corrected for multiple testing (ie, analysis of 11 SNPs) using the false discovery rate.²⁹ Between-data set heterogeneity was quantified using the I^2 metric for inconsistency,³⁰ and its statistical significance was tested with the χ^2 distributed *Q* statistic.³¹ I^2 is determined by the formula $(Q - df)/Q$, where *df* is the number of degrees of freedom (1 less than the number of combined data sets); it is considered large for values above 50%, and *Q* is considered statistically significant for *P*=.10.^{30,31} Possible publication bias was assessed by constructing individual funnel plots for most consistently significant SNPs (8, 9, and 10).³² These SNPs were chosen because they had a high genotyping frequency and homogeneity across data sets and constitute the risk haplotype C-G-C

*References 1–3, 5, 6, 13, 16, 17, 19, 21, 22, 24, 27, 28.

identified in the present meta-analysis and the initial study.⁶ Finally, we performed haplotype analyses of the individual data sets with a sliding window of 3 contiguous SNPs using PLINK and subsequently performed meta-analyses of these results.

RESULTS

The combined data sets of all available white studies included a total of 11 592 cases and 17 048 controls, and the combined data sets of all available Asian studies comprised 872 cases and 881 controls. The main characteristics of the individual data sets are given in Table 2.

Table 3 gives the results of the meta-analyses for the combined white and Asian studies. Because there was no evidence for between-data set heterogeneity of fixed-effects estimates and the random-effects estimates across data sets were similar, we adopted the pooled estimate derived by the fixed-effects model for SNPs showing no heterogeneity and adopted the OR derived by the random-effects model for SNPs showing heterogeneity. Notably, in the meta-analysis of all published white data sets (n=11 592 cases and 17 048 controls), 7 of the 11 assessed markers (ie, SNPs 4, 5, 8, 9, 10, 12, and 19) were significantly associated with AD after correction for multiple testing (Table 3). Importantly, the most significant associations were the C-G-C alleles at SNPs 8, 9, and 10 ($P<.001$) and the G allele at SNP 19 that were shown to be associated with AD in the initial report.⁶ Of note, SNPs 4, 5, 8 through 10, 12, and 19 through 25 belong to distinct linkage disequilibrium (LD) blocks, with a low D' between the blocks (eFigure 1; <http://www.archneurol.com>).

A meta-analysis of haplotypes at SNPs 8, 9, and 10 further confirmed C-G-C as a risk haplotype (OR, 1.2; $P<.001$; haplotype frequency, 0.56). Incomplete genotyping of SNPs 22 through 25 across the individual studies in combination with low haplotype frequencies of the putative risk haplotypes C-T-T and T-T-C at SNPs 22, 23, and 24 and 23, 24, and 25, respectively, did not allow us to perform meta-analyses of these putative risk haplotypes. Adjustment for age, sex, and *APOE* in each data set did not change these meta-analysis results. When the data sets of the initial report were excluded from the analysis (Canadian and Mayo Clinic data sets), the results for SNPs 8, 9, 10, and 12 remained essentially unchanged (Table 4). The eTable gives the allelic association test results for SNPs 8 through 10 in the individual white data sets.

In the combined Asian data sets containing all available Asian data (n=872 cases and 881 controls), several SNPs in the 3' end (SNPs 19 and 23–25), which lie within 1 LD block (eFigure 2), were associated with AD (Table 5). Among these, the strongest ORs and P values were observed for SNPs 19 ($P=.001$), 23 ($P<.001$), and 24 ($P<.001$). Of note, consistent with the meta-analyses of the white data set and the original report, the disease-associated alleles included the G allele at SNP 19 and the T and C alleles at SNPs 24 and 25. There was no association of SNPs 4, 5, 8, 9, 10, or 12 with AD in the combined Asian data sets. Also, these meta-analysis results remained unchanged after adjustment for age, sex, and *APOE* in each data set. Funnel plots of SNPs 8, 9, and 10 did not show evidence of publication bias (Figures 1, 2, and 3).

COMMENT

We obtained all available white and Asian data on the *SORL1*-AD association, which allowed us to perform unbiased, comprehensive meta-analyses of data of 30 393 individuals (12 464 cases and 17 929 controls). Our findings confirm that variants in *SORL1* are associated with risk for AD in white and Asian populations and that there are likely to be multiple causative genetic variants in distinct regions in *SORL1*. Although in the combined white data sets, markers in multiple regions of the gene were associated with AD risk, in the

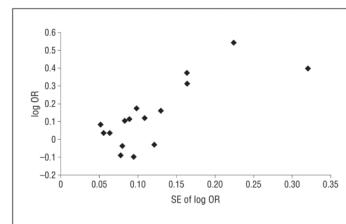
Asian data sets, markers in the 3' end were predominantly related to AD risk. Importantly, the variants associated with AD in the combined white data sets occur in several distinct LD blocks. These observations suggest that the negative findings of previously published, individually analyzed data sets were likely related to underpowered studies with small sample sizes, allelic or locus heterogeneity, or both. It is also likely that many of the complex genetic factors for late-onset AD, such as *SORL1* and other loci identified in large genome-wide association studies (eg, *CLU*, *CRI*, or *PICALM*),^{33,34} play only a modest role and are observable only in very large sample sizes or meta-analyses of several data sets.

Of note, the disease-associated alleles in the white and Asian data sets (including the C-G-C alleles at SNPs 8, 9, and 10, the G allele at SNP 19, and the T and C alleles at SNPs 24 and 25) were identical to those observed in the initial report⁶ and replicated by 11 subsequent studies.^{1-3,7,13-19} In addition, haplotype meta-analyses in the combined white data sets confirmed the finding in the initial report⁶ that the C-G-C haplotype at SNPs 8, 9, and 10 is associated with increased risk of AD. There is only 1 published case-control study of the *SORL1*-AD association in African Americans, Caribbean Hispanics, and Israeli Arabs, to our knowledge. Thus, we could not perform separate meta-analyses for these ethnic groups. However, as described in this study, the C-G-C haplotype at SNPs 8 through 10 was also associated with AD risk in both the 228 Caribbean Hispanic families⁶ and in the 111 cases and 144 controls from a community-based sample of Israeli Arabs.⁶ In addition, SNPs 22 through 25, including the T and C alleles at SNPs 24 and 25, were associated with AD in 238 African American sibships⁶ and an independent African American case-control data set (n=280).³

There is biological evidence suggesting that variants in *SORL1*, including the T allele at SNP 4, the C-G-C alleles at SNPs 8 through 10, the G allele at SNP 19, and the T and C alleles at SNPs 24 and 25 influence other AD endophenotypes. The SNPs in *SORL1* were found to be associated with magnetic resonance imaging endophenotypes of AD (general cerebral atrophy, hippocampal atrophy, white matter hyperintensities, and cerebrovascular disease) in 44 African American and 182 white sibships from the Multi-Institutional Research in Alzheimer's Genetic Epidemiology and with analogous pathological traits in 69 autopsy-confirmed white AD patients.³⁵ In the white sibships and autopsy sample, the C-G-C haplotype at SNPs 8 through 10 was associated with white-matter disease, and the T and C alleles at SNPs 24 and 25 were associated with hippocampal atrophy. In a study that explored *SORL1* expression in 29 AD vs 28 non-AD brains,³⁶ the expression of *FL-SORL1* but not δ -2-*SORL1* was associated with AD, neuropathologic AD, and synaptophysin expression. Consistent with the present meta-analysis, *SORL1* expression was also associated with the T allele at *SORL1* SNP 4. The SNPs 19, 21, 23, and 25 in *SORL1* were also associated with cerebrospinal fluid levels of A β 42 in 153 white AD patients ($P=.003$)³⁷ and age at onset of AD in 349 white AD patients (hazard ratio, 1.53; 95% confidence interval, 1.12–2.09; $P=.007$).¹⁷ Finally, in the study by Seshadri et al,¹⁴ *SORL1* SNP 29 was significantly associated with abstract reasoning ability as measured by the similarity test ($P<.001$) in 705 stroke- and dementia-free Framingham Study participants, indicating an association between *SORL1* and cognitive function.

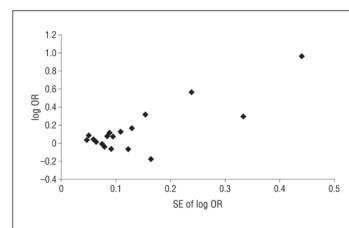
Taken together, these meta-analyses provide confirmatory evidence that multiple *SORL1* alleles in distinct LD blocks are associated with AD risk. However, *SORL1* may account for only a modest degree of the genetic variance of AD, similar to that of *CRI*, *CLU*, or *PICALM*.^{33,34} Moreover, the ability to demonstrate association between *SORL1* and AD may be even more difficult than these other genes, given the intralocus heterogeneity.

Acknowledgments

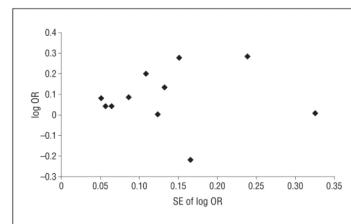

Funding/Support: This work was supported by grants R37-AG15473 and P01-AG07232 (Dr Mayeux), R01-AG09029, R01-AG25259, R01-AG17173, and P30-AG13846 (Dr Farrer), and R01-AG18023 and P50-AG16574 (Dr Younkin) from the National Institutes of Health and the National Institute on Aging, the Blanchette Hooker Rockefeller Fund, and The Charles S. Robertson Gift from the Banbury Fund (Dr Mayeux). The laboratory, under the direction of Dr St George-Hyslop, received additional support from the Canadian Institutes of Health Research, Alzheimer Society of Ontario, Howard Hughes Medical Institute, and the Wellcome Trust. Dr Younkin was also supported by the Robert H. and Clarice Smith and Abigail Van Buren Alzheimer's Disease Research Program. Dr Reitz was further supported by a Paul B. Beeson Career Development Award (K23AG034550). Dr Takeda was supported by grants from the Future Program and the Japan Society for the Promotion of Science. Research at the Antwerp site (Drs Bettens, Sleegers, and Van Broeckhoven) was funded in part by the Fund for Scientific Research–Flanders, the Special Research Fund of the University of Antwerp, the Interuniversity Attraction Poles program P6/43 of the Belgian Science Policy Office, the Foundation for Alzheimer's Research, and a Methusalem Excellence Grant of the Flemish Government; Belgium. Dr Sleegers is a postdoctoral fellow and Dr Bettens a PhD fellow of the Fund for Scientific Research–Flanders. The research under the direction of Dr Prince was funded by National Institutes of Health grants AG028555, AG08724, and AG08861 and Swedish Medical Research Council grant 2007–2722. The research performed under the direction of Dr Kamboh was supported by National Institutes of Health/National Institute on Aging grants AG030653 and AG05133. The research at the Italian site was supported by grant 2007HJCCSF_003 from the Italian Ministry of Instruction, University, and Research and grant 1070IT/cv2007.0548 from the San Paolo Company. Dr Tan is supported by the National Medical Research Council, Sing-Health Foundation, and Singapore General Hospital. Dr Maier was funded by the Competence Network on Dementia and Degenerative Disorders, Germany. The 610 group, part of the Genetic and Environmental Risk in Alzheimer Disease 1 consortium, was supported by funding from the Wellcome Trust, including grant GR082604MA; the Medical Research Council, including grant G0300429; Alzheimer's Research Trust; the Welsh Assembly Government; the Alzheimer's Society; Ulster Garden Villages Ltd; the Northern Ireland Research & Development Office; the Royal College of Physicians/Dunhill Medical Trust; Mercer's Institute for Research on Ageing; Bristol Research into Alzheimer's and Care of the Elderly; the Charles Wolfson Charitable Trust; the National Institutes of Health, including grants PO1-AG026276, PO1-AG03991, R01-AG16208, and P50-AG05681; the National Institute on Aging; Barnes-Jewish Hospital Foundation; the Charles F. and Joanne Knight Alzheimer's Research Initiative of the Washington University Alzheimer's Disease Research Centre; the University College London Hospital/University College London Comprehensive Biomedical Research Centre; H. Lundbeck A/S; the German Federal Ministry of Education and Research; Kompetenznetz Demenzen grant 01GI0420; Bundesministerium für Bildung und Forschung; and Competence Network on Dementia grants 01GI0102 and 01GI0711.

References

1. Bettens K, Brouwers N, Engelborghs S, De Deyn PP, Van Broeckhoven C, Sleegers K. *SORL1* is genetically associated with increased risk for late-onset Alzheimer disease in the Belgian population. *Hum Mutat.* 2008; 29(5):769–770. [PubMed: 18407551]
2. Lee JH, Cheng R, Honig LS, Vonsattel J-PG, Clark L, Mayeux R. Association between genetic variants in *SORL1* and autopsy-confirmed Alzheimer disease. *Neurology.* 2008; 70(11):887–889. [PubMed: 17978276]
3. Lee JH, Cheng R, Schupf N, et al. The association between genetic variants in *SORL1* and Alzheimer disease in an urban, multiethnic, community-based cohort. *Arch Neurol.* 2007; 64(4): 501–506. [PubMed: 17420311]
4. Lee JH, Chulikavat M, Pang D, Zigman WB, Silverman W, Schupf N. Association between genetic variants in sortilin-related receptor 1 (*SORL1*) and Alzheimer's disease in adults with Down syndrome. *Neurosci Lett.* 2007; 425(2):105–109. [PubMed: 17826910]
5. Li Y, Rowland C, Catanese J, et al. *SORL1* variants and risk of late-onset Alzheimer's disease. *Neurobiol Dis.* 2008; 29(2):293–296. [PubMed: 17949987]
6. Rogava E, Meng Y, Lee JH, et al. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. *Nat Genet.* 2007; 39(2):168–177. [PubMed: 17220890]
7. Webster JA, Myers AJ, Pearson JV, et al. *Sorl1* as an Alzheimer's disease predisposition gene? *Neurodegener Dis.* 2008; 5(2):60–64. [PubMed: 17975299]
8. Andersen OM, Reiche J, Schmidt V, et al. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. *Proc Natl Acad Sci U S A.* 2005; 102(38): 13461–13466. [PubMed: 16174740]


9. Hermey G. The Vps10p-domain receptor family. *Cell Mol Life Sci.* 2009; 66(16):2677–2689. [PubMed: 19434368]
10. Small SA. Retromer sorting: a pathogenic pathway in late-onset Alzheimer disease. *Arch Neurol.* 2008; 65(3):323–328. [PubMed: 18332244]
11. Dodson SE, Gearing M, Lippa CF, Montine TJ, Levey AI, Lah JJ. LR11/SorLA expression is reduced in sporadic Alzheimer disease but not in familial Alzheimer disease. *J Neuropathol Exp Neurol.* 2006; 65(9):866–872. [PubMed: 16957580]
12. Sager KL, Wuu J, Leurgans SE, et al. Neuronal LR11/sorLA expression is reduced in mild cognitive impairment. *Ann Neurol.* 2007; 62(6):640–647. [PubMed: 17721864]
13. Meng Y, Lee JH, Cheng R, St George-Hyslop P, Mayeux R, Farrer LA. Association between SORL1 and Alzheimer's disease in a genome-wide study. *Neuroreport.* 2007; 18(17):1761–1764. [PubMed: 18090307]
14. Seshadri S, DeStefano AL, Au R, et al. Genetic correlates of brain aging on MRI and cognitive test measures: a genome-wide association and linkage analysis in the Framingham Study. *BMC Med Genet.* 2007; 8(suppl 1):S15. [PubMed: 17903297]
15. Tan EK, Lee J, Chen CP, Teo YY, Zhao Y, Lee WL. *SORL1* haplotypes modulate risk of Alzheimer's disease in Chinese. *Neurobiol Aging.* 2009; 30(7):1048–1051. [PubMed: 18063222]
16. Feulner TM, Laws SM, Friedrich P, et al. Examination of the current top candidate genes for AD in a genome-wide association study. *Mol Psychiatry.* 2010; 15(7):756–766. [PubMed: 19125160]
17. Kölsch H, Jessen F, Wiltfang J, et al. Association of SORL1 gene variants with Alzheimer's disease. *Brain Res.* 2009; 1264:1–6. [PubMed: 19368828]
18. Kimura R, Yamamoto M, Morihara T, et al. *SORL1* is genetically associated with Alzheimer disease in a Japanese population. *Neurosci Lett.* 2009; 461(2):177–180. [PubMed: 19539718]
19. Cellini E, Tedde A, Bagnoli S, et al. Implication of sex and *SORL1* variants in Italian patients with Alzheimer disease. *Arch Neurol.* 2009; 66(10):1260–1266. [PubMed: 19822782]
20. Li H, Wetten S, Li L, et al. Candidate single-nucleotide polymorphisms from a genome-wide association study of Alzheimer disease. *Arch Neurol.* 2008; 65(1):45–53. [PubMed: 17998437]
21. Liu F, Ikram MA, Janssens AC, et al. A study of the SORL1 gene in Alzheimer's disease and cognitive function. *J Alzheimers Dis.* 2009; 18(1):51–64. [PubMed: 19584446]
22. Minster RL, DeKosky ST, Kamboh MI. No association of *SORL1* SNPs with Alzheimer's disease. *Neurosci Lett.* 2008; 440(2):190–192. [PubMed: 18562096]
23. Shibata N, Ohnuma T, Baba H, Higashi S, Nishioka K, Arai H. Genetic association between SORL1 polymorphisms and Alzheimer's disease in a Japanese population. *Dement Geriatr Cogn Disord.* 2008; 26(2):161–164. [PubMed: 18685254]
24. Cousin E, Macé S, Rocher C, et al. No replication of genetic association between candidate polymorphisms and Alzheimer's disease [published online ahead of print November 2, 2009]. *Neurobiol Aging.* 10.1016/j.neurobiolaging.2009.09.004
25. Lee JH, Shibata N, Cheng R, Mayeux R. Possible association between SORL1 and Alzheimer disease? reanalysing the data of Shibata et al. *Dement Geriatr Cogn Disord.* 2008; 26(5):482. [PubMed: 18984959]
26. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer's disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. *Neurology.* 1984; 34(7):939–944. [PubMed: 6610841]
27. Reynolds CA, Hong M-G, Eriksson UK, et al. Sequence variation in *SORL1* and dementia risk in Swedes. *Neurogenetics.* 2010; 11(1):139–142. [PubMed: 19653016]
28. Beecham GW, Martin ER, Li Y-J, et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. *Am J Hum Genet.* 2009; 84(1):35–43. [PubMed: 19118814]
29. Benjamini Y, Drai D, Elmer G, Kafkafi N, Golani I. Controlling the false discovery rate in behavior genetics research. *Behav Brain Res.* 2001; 125(1–2):279–284. [PubMed: 11682119]
30. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. *BMJ.* 2003; 327(7414):557–560. [PubMed: 12958120]

31. Lau J, Ioannidis JP, Schmid CH. Quantitative synthesis in systematic reviews. *Ann Intern Med.* 1997; 127(9):820–826. [PubMed: 9382404]
32. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. *BMJ.* 1997; 315(7109):629–634. [PubMed: 9310563]
33. Harold D, Abraham R, Hollingworth P, et al. Genome-wide association study identifies variants at *CLU* and *PICALM* associated with Alzheimer's disease. *Nat Genet.* 2009; 41(10):1088–1093. [PubMed: 19734902]
34. Lambert J-C, Heath S, Even G, et al. European Alzheimer's Disease Initiative Investigators. Genome-wide association study identifies variants at *CLU* and *CRI* associated with Alzheimer's disease. *Nat Genet.* 2009; 41(10):1094–1099. [PubMed: 19734903]
35. Cuenco TK, Lunetta KL, Baldwin CT, et al. MIRAGE Study Group. Association of distinct variants in *SORL1* with cerebrovascular and neurodegenerative changes related to Alzheimer disease. *Arch Neurol.* 2008; 65(12):1640–1648. [PubMed: 19064752]
36. Grear KE, Ling I-F, Simpson JF, et al. Expression of *SORL1* and a novel *SORL1* splice variant in normal and Alzheimer's disease brain. *Mol Neurodegener.* 2009; 4:46. [PubMed: 19889229]
37. Kölsch H, Jessen F, Wiltfang J, et al. Influence of *SORL1* gene variants: association with CSF amyloid- β products in probable Alzheimer's disease. *Neurosci Lett.* 2008; 440(1):68–71. [PubMed: 18541377]


Figure 1.

Funnel plot of single-nucleotide polymorphism 8 (white and Asian data sets). OR indicates odds ratio.

Figure 2.

Funnel plot of single-nucleotide polymorphism 9 (white and Asian data sets). OR indicates odds ratio.

Figure 3.

Funnel plot of single-nucleotide polymorphism 10 (white and Asian data sets). OR indicates odds ratio.

SORL1 SNPs

Table 1

SNP No.	dbSNP rs No.	Location, bp	Distance From Previous Marker, bp	Alleles	Orientation/Strand	SNP Type
1	rs4935774	120 826 964		A/G	Rev/T	Upstream of 5' UTR
2	rs578506	120828 687		C/G	Fwd/B	Intron
3	rs582446	120 833 069		A/G	Fwd/T	Intron
4	rs661057	120 834 164		C/T	Fwd/B	Intron
5	rs11218304	120 834 321	20 157	C/T	Rev/B	Intron
6	rs560573	120 866 094	11 773	A/T	Fwd/B	Intron
7	rs12364988	120 872 836	6742	A/G	Rev/T	H269H
8	rs668387	120 873 131	295	C/T	Rev/B	Intron
9	rs689021	120 876 330	3199	A/G	Rev/T	Intron
10	rs641120	120 886 175	9845	C/T	Fwd/B	Intron
11	rs4935775	120 894 712	8337	C/A	Rev/T	Intron
12	rs12283364	120 898 436	3724	C/T	Fwd/B	Intron
13	rs2298813	120 898 894	458	A/G	Fwd/T	T528A
14	rs11600231	120 911 918	13 024	C/T	Fwd/B	Intron
15	rs2276346	120 919 686	7768	G/T	Fwd/B	Intron
16	SORL1-T833T	120 931 165	11 479	A/T	Fwd/T	T833T
17	rs556349	120 931 417	252	G/T	Rev/B	Intron
18	rs11218340	120 936 564	5147	A/T	Fwd/B	Intron
19	rs2070045	120 953 300	16 736	G/T	Fwd/B	S1187S
20	rs3824966	120 953 393	93	C/G	Fwd/T	Intron
21	SORL1-18ex26	120 959 359	5066	C/G	Fwd/T	(-18) 5' of exon 26
22	rs1699102	120 962 172	2813	C/T	Fwd/B	N1246N
23	rs3824968	120 981 132	18 960	A/T	Rev/T	A1584A
24	rs2282649	120 984 168	3036	C/T	Fwd/B	Intron
25	rs1010159	120 988 611	4443	C/T	Rev/B	Intron
26	rs1784933	120 994 626	6015	A/G	Fwd/T	Intron
27	rs1614735	120 998 211	3585	C/A	Rev/T	Intron
28	rs1133174	121 006 965	8754	A/G	Fwd/T	Downstream of 3' UTR
29	rs1131497	121 007 955	990	C/G	Fwd/B	Downstream of 3' UTR

Abbreviations: bp, base pair; dbSNP, Single-Nucleotide Polymorphism Database; fwd, forward; rev, reverse; rs, reference number; SNP, single-nucleotide polymorphism; SORL1, sortilin-related receptor gene.

Studies Included in the Meta-analyses

Table 2

Source	Country	Ethnicity	No. of Cases (n=12,464)	No. of Individuals (n=17,929)	AAO	AALV	SNPs Studied
Rogaeva et al, ⁶ 2007	Canada, Northern Europe	White	177	224	76.1 (7.0)	73.2 (8.1)	4, 5, 8–10, 12, 19, 22–25
Rogaeva et al, ⁷ 2007	United States	White	549	477	77 (5.0)	75 (6.0)	4, 5, 8, 9, 12, 19, 22, 23, 24, 25
Rogaeva et al, ⁸ 2007	United States	White	443	1217	76 (6.0)	77 (5.0)	4, 5, 8, 9, 12, 19, 22, 23, 24, 25
Rogaeva et al, ⁹ 2007	United States (autopsy series)	White	423	430	76 (6.0)	74 (6.0)	4, 5, 8, 9, 12, 19, 22, 23, 24, 25
Lee et al, ³ 2007	United States	White	30	76	84.4 (8.0)	82.7 (7.2)	4, 5, 8–10, 12, 19, 22–25
Meng et al, ¹³ 2007	United States (Translational Genomics Research Institute)	White	859	552	76.9 (7.6)	77.4 (7.3)	8, 24, 25
Lee et al, ² 2008	United States	White	103	93	80.5 (7.2)	79.7 (8.0)	8–10, 22–25
Minster et al, ²² 2008	United States	White	1009	1009	72.9 (6.2)	74.1 (6.1)	4, 8, 9, 10, 19, 23
Kölsch et al, ¹⁷ 2009	Germany	White	348	487	71.9 (8.2)	71.6 (8.2)	4, 19, 23, 25
Bettens et al, ¹ 2008	Belgium	White	550	634	78.9 (5.2)	61.9 (15.3)	4, 5, 8–10, 12, 19, 22–25
Shibata et al, ²³ 2008	Japan	Japanese	180	130	68.1 (10.8)	60.6 (6.9)	8–10, 22–25
Cellini et al, ¹⁹ 2009	Italy	White	350	358	76.2 (8.9)	83.4 (17.9)	4, 5, 8–10, 12, 19, 22–25
Beecham ^a et al, ²⁸ 2009	United States	White	656	804	73.2 (7.1)	73.2 (7.1)	4, 9, 12, 19, 22–24
Feulner et al, ¹⁶ 2009	Germany	White	486	492	72.4 (8.8)	39.7 (11.1)	4, 9, 19, 22
Liu et al, ²¹ 2009	The Netherlands	White	490	6251	68.9 (8.7)	69.5 (9.1) ^b	8–10, 22–25
Tan et al, ¹⁵ 2009	Singapore	Malay/Chinese	255	300	71.2 (8.9)	70.8 (8.5)	8–10, 19, 22–24
Kimura et al, ¹⁸ 2009	Japan	Japanese	437	451	71.9 (8.2)	74.8 (5.8)	4, 8, 9, 12, 19, 23–25
Harold et al, ³³ 2009	United Kingdom	White	3333	1225	73.1 (8.6)	76.3 (6.8)	4, 9, 19, 22
Reynolds et al, ²⁷ 2009	Sweden	White	1270	2180	74.5 (8.2)	78.3 (9.0)	8–10, 19, 23, 24
Cousin et al, ²⁴ 2009	France	White	516	539	63.4 (9.1)	67.3 (10.9)	4, 8–10, 12, 23–25

Abbreviations: AALV, age at last visit (unaffected only); AAO, age at onset of disease (cases only); SNP, single-nucleotide polymorphism.

^aIncludes previously unpublished SNP results.^bAge at last visit of whole cohort (cases and controls).

Table 3Association Between *SORL1* SNPs and Alzheimer Disease in the Combined White Data Sets of 11 592 Cases and 17 048 Controls

SNP	Allele 1	Reference Allele	No.	OR (95% CI)	P Value	I^2	P Value (Q) ^a
4	C	T	1 6753	0.94 (0.90–0.99)	.01	35.2	.12
5	C	T	5924	1.1 (1.02–1.17)	.01	0	.46
8	C	T	20 742	1.08 (1.03–1.13)	.001	31.6	.15
9	G	A	26 308	1.06 (1.02–1.10)	.007	4.2	.40
10	C	T	15 812	1.08 (1.03–1.13)	.002	0	.78
12	C	T	6694	0.8 (0.68–0.96)	.006	8.2	.36
19	G	T	19 206	1.08 ^b (1.01–1.14)	.02 ^b	44.9	.05
22	C	T	20 850	1.03 (0.98–1.08)	.21	0	.69
23	T	A	20 247	1.02 ^b (0.95–1.09)	.62 ^b	55.4	.01
24	C	T	19 195	0.96 (0.90–1.02)	.22	26.5	.19
25	C	T	16 120	1.01 (0.97–1.05)	.62	10.1	.35

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism; *SORL1*, sortilin-related receptor gene.^aHeterogeneity (Cochran Q) P value (considered statistically significant for $P=10^{-30.31}$).^bOR (P value) derived from random-effects model.

Table 4

Association Between *SORL1* SNPs and Alzheimer Disease in the Combined White Data Sets, Excluding the Data Sets From the Initial Study⁶ (Canadian and Mayo Clinic Data Sets)

SNP No.	Allele 1	Reference Allele	No.	OR (95% CI)	P Value	P Value (Q) ^a
4	C	T	12813	0.97 (0.92–1.03)	.31	.22
5	C	T	1984	1.13 (0.99–1.26)	.06	.0
8	C	T	16802	1.07 (1.02–1.12)	.01	.27
9	G	A	22368	1.05 (1.01–1.09)	.03	.0
10	C	T	15411	1.08 (1.02–1.13)	.006	.0
12	C	T	2754	0.75 (0.59–0.99)	.03	.19
19	G	T	15266	1.05 (0.99–1.11)	.10	.0
22	C	T	16910	1.02 (0.96–1.08)	.54	.0
23	T	A	16307	0.99 (0.95–1.03)	.62	.72
24	C	T	15255	0.99 (0.94–1.04)	.69	.28
25	C	T	12180	0.98 (0.93–1.03)	.47	.0

Abbreviations: CI, confidence interval; OR, odds ratio; SNP, single-nucleotide polymorphism; *SORL1*, sortilin-related receptor gene.

^aHeterogeneity (Cochran Q) P value (considered statistically significant for $P=10^{30,31}$).

Table 5Association Between *SORL1* SNPs and Alzheimer Disease in the Combined Asian Data Sets of 872 Cases and 881 Control Individuals

SNP	Allele 1	Reference Allele	No.	OR (95% Confidence Interval)	P Value	χ^2	P Value (Q) ^a
4	C	T	388	1.05 (0.87–1.23)	.61	0	>.99
5	C	T	NG	NG	NG	NG	NG
8	C	T	1753	>.99 (0.99–1.01)	.99	36.8	.31
9	G	A	1753	0.99 (0.91–1.08)	.82	0.7	.42
10	C	T	865	0.92 (0.75–1.12)	.42	9.47	.33
12	C	T	888	0.82 (0.47–1.34)	.07	0	>.99
19	G	T	1443	1.27 (1.10–1.41)	.001	0	.72
22	C	T	865	0.78 (0.60–1.05)	.07	0	.93
23	T	A	1753	0.79 (0.69–0.92)	<.001	0	.72
24	C	T	1753	0.76 (0.67–0.89)	<.001	0	.92
25	C	T	1198	1.21 (1.03–1.37)	.02	0	.43

Abbreviations: CI, confidence interval; NG, not genotyped; OR, odds ratio; SNP, single-nucleotide polymorphism; *SORL1*, sortilin-related receptor gene.^aHeterogeneity (Cochran Q) P value (considered statistically significant for $P=10^{-30.31}$).