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Background: Missense mutations in the amyloid pre-
cursor protein (APP) gene cause early-onset Alzheimer
disease (AD). However, little is known regarding the ef-
fects of polymorphisms in regulatory sequences of APP
on AD susceptibility.

Objectives: To identify polymorphisms in the APP pro-
moter, to test these for associations with AD, and to as-
sess their influence on APP promoter activity in trans-
fected cells.

Setting: Community study of 1013 people of white, Af-
rican American, or Caribbean Hispanic ethnicity, 65 years
and older, residing in northern Manhattan.

Main Outcome Measures: The diagnosis of AD was
established by stringent criteria, with multiple fol-
low-up examinations over 7 years.

Results: We identified 2 polymorphisms in the APP pro-
moter: a rare G — C variant at -9 and a frequent G- C
variant at +37 relative to the transcription start site. The
+37C allele was most frequent in African American pa-

tients (18% frequency), followed by Caribbean His-
panic patients (10%) and white patients of European de-
scent (3%). This allele was overrepresented among
patients with AD compared with elderly controls (odds
ratio [OR], 1.57; 95% confidence interval [CI], 1.08-
2.27 in the combined ethnic groups), but this was not
significant after adjusting for age, sex, and education (OR,
1.41;95% CI,0.93-2.12). A stronger association was found
in participants lacking any apolipoprotein-E €4 allele (OR,
2.12;95% CI, 1.36-3.32 [univariate analysis]; OR, 2.08;
95% CI, 1.26-3.45 after adjusting for age, sex, and
education). The —9C allele was not frequent enough to
be evaluated for a disease association. Both variants were
tested in promoter-reporter assays in U-87 glioma cells,
and no differences in promoter activity were detected.

Conclusions: The -9G/C and +37G/C APP promoter
polymorphisms are unlikely to contribute strongly to AD
susceptibility or to cause major differences in APP ex-
pression, but the +37C allele warrants further study for
association with AD in larger population samples.
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HE NEUROTOXIC and amy-

loidogenic peptide AP is

generated by proteolytic

cleavage of the amyloid pre-

cursor protein (APP).! Ge-
netic and functional studies have assigned
a pivotal role for increased AP production
in the neuropathologic characteristics of
Alzheimer disease (AD). Several factors ac-
count for the increased secretion of AR and
the accelerated aggregation of this peptide
in AD. These include missense mutations
in the APP gene and in the genes encoding
presenilin-1 and presenilin-2, which in-
crease the proteolytic conversion of APP
into the fibrillogenic AB42 peptide and lead
to early-onset AD.** A coding change in a
third locus, the apolipoprotein-E (APOE)
€4 variant, acts to increase A3 aggregation
and is a significant risk factor for late-
onset AD.>®

Since the production of A is pre-
dicted to depend both on the amount of
APP protein and on factors involved in its
processing, a link between increased APP
gene expression and AD has been exam-
ined. Increased expression of the APP gene
correlates with AR accumulation in se-
vere head injury in humans, and overex-
pression, but not low-level expression, of
APP missense alleles in transgenic mice
mimics some aspects of AD.”® Perhaps
most convincingly, APP gene duplication
in trisomy 21 leads to elevated levels of cir-
culating AP peptide™ and to premature ac-
cumulation of AP in amyloid plaques in
the brain,'"!? a process that likely contrib-
utes to the observed approximately 40-
year decrease in age of onset of AD in
people with Down syndrome.">!'*

Although the molecular mecha-
nisms governing APP gene expression are
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Table 1. Oligonucleotidic Sequences and Primer Annealing Conditions*

Position in GenBank PCR Fragment

Primer Sequence Annealing, °C Accession D87675 Size, bp
1F GCTCGTGCCTGCTTTTGACGTTGG 69 8428-8451 256
IR CCTGGGCTTCGTGAACAGTGGGA 8784-8762

oF AGCCTCAGCGTCCTAGGACTCAC _ 8693-8715

2R AGTGCGCTGCTGTGCGAGTGGGAT O B DU Ll 9125-9102 i
3F GATCAGCTGACTCGCCTGGCT 65 8949-8969 %
3R GCACGCTCCTCCGCGTGCTCT 9024-9044

4F GCTGAGCTCTGCTTTTGACGTTGGGGG 65 8436-8454 733
4R CAGAGATCTCAGTGCCAAACCGGGCAG 9168-9151

ASO-C ACGCGGAGCAGCGTGCG T 9029-9045

ASO-G ACGCGGAGGAGCGTGCG A3 O (6 e L) 9029-9045 ik

APP Messenger RNA
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Figure 1. Segments of the amyloid precursor protein (APP) promoter
examined in this study. Numbering is relative to the transcription start site
(TSS). Arrows indicate polymerase chain reaction primers (see Table 1).

not fully understood, the APP promoter is an essential
regulatory element that is highly conserved between spe-
cies. It resembles promoters of housekeeping genes in that
the proximal region has a high GC content and lacks typi-
cal CAAT and TATA boxes. The APP promoter contains
consensus binding sites for several transcription factors
that respond to signals from extracellular ligands and cell
stress and an initiator sequence that is essential for start
site selection.”° Little information is available concern-
ing genetic variation in APP regulatory sequences. To date,
the screening for variants in the APP promoter identi-
fied a C - G substitution at position -209 relative to the
transcription start site, which was stated as not associ-
ating with AD, although data on allele frequencies were
not shown.””?® Another polymorphic marker, a micro-
satellite sequence in the first intron of APP, showed weak
association with AD in a recent sibling study,* but a tet-
ranucleotide repeat in intron 7 did not associate with AD.*
To address this issue more fully, we have screened for
APP promoter variants in a large tri-ethnic population
sample of elderly Caribbean Hispanic, African Amer-
ican, and white participants. We report functional and
genetic association data for 2 APP promoter polymor-
phisms found in this population.

— R

PARTICIPANTS AND DIAGNOSIS

Participants were individuals older than 65 years residing in
the Washington Heights—Inwood neighborhood of Manhat-
tan. For those who agreed to participate, an in-person inter-
view and a standardized assessment, including a medical history,

*PCR indicates polymerase chain reaction; NA, not applicable; and bp, base pair.

physical and neurological examination, and neuropsychologi-
cal battery,* were completed. Individuals who qualified for ini-
tial inclusion in the community study (n=1401) all had at least
one subsequent follow-up evaluation. Participants included 282
(20%) non-Hispanic whites, 462 (33%) African Americans, 646
(46%) Caribbean Hispanics, and 11 (1%) from other ethnic
groups. For this study we excluded individuals with other forms
of dementia or Parkinson disease. We also excluded individu-
als with questionable dementia (possible AD). This left 1077
eligible individuals, of whom 169 (16%) had a history of stroke.
Of these, DNA from 1013 people was used for genotyping. For
patients with AD, the diagnosis was established at a consensus
conference of physicians and neuropsychologists and re-
quired evidence of cognitive deficit on the neuropsychologi-
cal battery and evidence of impairment in social or occupa-
tional function. When available, all medical records and imaging
studies were used in the evaluation, as were data from the ini-
tial and follow-up examinations. Patients with AD included in-
dividuals with probable AD and those with a Clinical Demen-
tia Rating Scale score of 1.0 or higher.*

POLYMERASE CHAIN REACTION,
DNA SEQUENCING, AND GENOTYPING

Oligonucleotide primers for polymerase chain reaction (PCR)
amplification of the APP promoter were based on GenBank (Na-
tional Center for Biotechnology Information, National Li-
brary of Medicine, National Institutes of Health, Bethesda, Md)
accession D87675 (Table 1 and Figure 1). Fragments were
amplified from genomic DNAs using Platinum Taq DNA Poly-
merase (Invitrogen, Carlsbad, Calif), with cycling parameters
of denaturation at 94°C for 30 seconds, annealing at a specific
temperature for 45 seconds (primer sequences and tempera-
tures in Table 1), and extension at 72°C for 1 minute. Direct
sequencing of the PCR products was performed with dye ter-
minators (ABI PRISM 377 DNA Sequencer; Applied Biosys-
tems, Foster City, Calif). To improve accuracy, the polymor-
phisms were scored by multiple partially redundant methods.
For denaturing high-performance liquid chromatography
(DHPLC), sequences were amplified as described herein us-
ing primers 2F and 2R, except the final extension in the PCR
was followed by denaturation and reannealing to allow het-
eroduplex formation. Of the PCR product, 15 pL was injected
into the WAVE (Transgenomics, Omaha, Neb) DNA fragment
analysis system. The DHPLC parameters were calculated us-
ing a predictive algorithm supplied by the manufacturer. The
+37G/C polymorphism in the heterozygous configuration pro-
duced a common DHPLC variant, while heterozygosity for the
—9G/C polymorphism produced a rare DHPLC variant. For con-
firming heterozygotes and detecting homozygotes at the +37G/C
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polymorphism, the PCR products were resolved on duplicate
1% agarose gels, blotted, and hybridized with **P end-labeled,
allele-specific oligonucleotides ACGCGGAGCAGCGTGCG and
ACGCGGAGGAGCGTGCG. End labeling of probes was con-
ducted with y[**P]adenosine triphosphate using T4 polynucleo-
tide kinase (Promega, Madison, Wis), and hybridization con-
ditions have been described.” For definitive genotyping of the
—9G/C polymorphism, the region flanking the polymorphism
was amplified by PCR with primers 3F and 3R to generate a 95
base pair (bp) product. This was digested with 2 U of the re-
striction enzyme Aval (Roche, Indianapolis, Ind) at 37°C over-
night and resolved on 3% Metaphor (BioWhittaker Molecular
Applications, Rockland, Md) agarose gels stained with ethidium
bromide. The G allele is cleaved to fragments of 57 and 39 bp,
distinguishable from the 96 bp fragment representing the C
allele.

CELL CULTURE AND
PROMOTER-REPORTER ASSAYS

A 750-bp promoter fragment, spanning from —573 to +177 rela-
tive to the transcription start site, was amplified from tem-
plates corresponding to homozygotes for each allele using prim-
ers 4F and 4R into which Sacl and BglII restriction sites were
introduced. The PCR products from individuals with—9G;+37G,
—9G;+37C, and -9C;+37G haplotypes were directionally cloned
between Sacl and BgIII sites of the pGL3-Basic vector (Pro-
mega) upstream of the luciferase reporter gene. Negative and
positive control constructs were pGL3-Basic, lacking any pro-
moter sequences, and pGL3-Control, containing the SV40 pro-
moter and enhancer sequences. A 3-galactosidase expression
plasmid (pSV-beta-galactosidase; Promega) was co-
transfected to allow normalization for transfection efficiency.
U-87 MG glioma cells (American Type Culture Collection, Rock-
ville, Md) were grown in EMEM medium with Earle’s bal-
anced salt solution and 2mM L-glutamine containing 10% heat-
inactivated fetal calf serum. The cells were transfected at 70%
confluence using FuGene 6 reagent (Roche) according to the
manufacturer’s specifications. When decreasing amounts of the
experimental reporter constructs were used, the total amount
of transfected DNA per well was kept constant by adding pGL3-
Basic plasmid to achieve a final DNA amount of 1 pg per 35
mm? plate. The transfected U87 cells were washed with phos-
phate-buffered isotonic sodium chloride solution and lysed in the
plate using 250 pL of Reporter Lysis Buffer (B-Galactosidase
Enzyme Assay System; Promega). The cell extract was centri-
fuged for 5 minutes at 10000g, and the supernatant was col-
lected. An aliquot (20 pL) was used for determining luciferase
activity with 100 pL of Luciferase Assay Buffer (Promega) in a
Berthold luminometer. B-Galactosidase assays (f3-
Galactosidase Assay System; Promega) were performed accord-
ing to the manufacturer’s protocol using 10 to 20 pL of the cell
lysate. Luciferase values were then normalized to 3-galactosi-
dase activity.

STATISTICAL ANALYSIS

Allele frequencies were determined by counting each allele and
by calculating sample proportions. For comparison of cases and
controls within and across ethnic groups, allele frequencies were
calculated for all participants and compared using x> analysis.
Logistic regression was used to compute the odds ratio for the
association between AD and the APP promoter polymor-
phisms. Data were stratified by the presence or absence of an
APOE €4 allele and by adjusting for differences in age and edu-
cation. Logistic regression analyses were conducted sepa-
rately for each ethnic group. We tested for Hardy-Weinberg equi-
librium using a x* analysis. Multivariate logistic regression was

used to compute the odds ratio for the association between AD
and APP promoter polymorphisms, adjusting for age, sex, and
education.

— T

SEQUENCE POLYMORPHISMS
IN THE APP PROMOTER

To screen for APP promoter variants in a tri-ethnic popu-
lation, the proximal promoter region, from -573 to +125
relative to the transcriptional initiation site, was ampli-
fied from genomic DNA of 20 individuals, approxi-
mately equally divided among African American, Carib-
bean Hispanic, and white ethnic groups. We focused on
this region since functional analysis and deletion map-
ping of the human and murine APP promoters have shown
it to be sufficient for high level expression in various cell
types.'8292223 The initial PCR strategy generated over-
lapping amplicons with primers 1F and 1R and 2F and
2R (Table 1 and Figure 1). Sequencing revealed a single
polymorphism: a G - C substitution in the first (non-
translated) exon, at position +37. To extend this search
to detect rare variants, the amplicon from —308 to +124
(primers 2F and 2R; Table 1 and Figure 1) was gener-
ated from genomic DNAs of 1019 individuals, includ-
ing patients with AD and elderly controls, from the tri-
ethnic population sample. These PCR products were
analyzed by DHPLC, a highly sensitive method that we
have previously employed for detecting allelic variants
without a prior knowledge of sequence variation.>* Se-
quencing of PCR products that produced rare DHPLC
variants revealed a second polymorphism, a G - C sub-
stitution at position —9. No other variants were found.
The DHPLC analysis also provided preliminary scoring
of heterozygosity at the +37G/C site. For definitive geno-
typing of the +37G/C polymorphism, the PCR products
generated with primers 2F and 2R (Table 1 and Figure
1) were analyzed by Southern blottings followed by hy-
bridization with allele-specific oligonucleotides. Since the
—9G/C polymorphism fell within an Aval restriction site,
definitive genotyping of this marker was performed by
Aval digestion of the PCR products made with primers
3F and 3R (Table 1 and Figure 1).

ALLELE FREQUENCIES IN PATIENTS
WITH AD AND CONTROLS

Overall allele frequencies for the +37G/C and -9G/C poly-
morphisms in the combined ethnic groups did not de-
viate significantly from Hardy-Weinberg equilibrium. The
genotype distributions for the +37G/C and —9G/C poly-
morphisms in patients with AD and controls are given
in Table 2 and Table 3. While the —-9C allele was not
frequent enough to allow statistical conclusions (Table
3), the +37C allele was overrepresented among AD cases
overall. This trend was significant only in the univariate
analysis of the combined ethnic groups and was not sig-
nificant after correcting for age, sex, and education (Table
2). Since the frequency of the +37C allele was highest in
African Americans, we also analyzed this group sepa-
rately. This showed a similar trend, but again, the re-
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Table 2. Allele Frequencies of the -9G/C and +37G/C Polymorphisms and Rates of AD in 3 Ethnic Groups*

Control Patients
Group -9G -9C +37G +37C Cases, % With AD, %
White 310 (100.0) 0 366 (96.8) 12 (3.2) 91.6 8.4
Caribbean Hispanic 800 (99.3) 6 (0.7) 871 (89.6) 101 (10.4) 80.2 19.8
African American 544 (99.3) 4(0.7) 556 (82.3) 120 (17.8) 80.1 19.9
Total 1654 (99.4) 10 (0.6) 1793 (88.5) 233 (11.5)

*Individuals with uncertain clinical diagnosis (possible Alzheimer disease) are excluded (see the “Methods” section). Values are given as No. (%) except where

indicated.

Table 3. Distributions of +37G/C and -9G/C Genotypes in Patients With Alzheimer Disease and Controls*

Univariate OR Multivariate OR
Genotype AD Cases Controls (95% ClI) (95% CI)
+37G/C Genotypes
GG 124 (71.7) 671 (79.9) 1.00 1.00
GC 45 (26.0) 158 (18.8) 1.54 (1.05-2.26) 1.34 (0.88-2.05)
cC 1.97 (0.62-6.28) 2.55 (0.70-9.21)

4(2.3) 11(1.3)
... . 1.57 (1.08-2.27)

1.41 (0.93-2.12)

+37G/C Genotypes (African American Patients)

GG 39 (59.1) 191 (70.2)
GC 23 (34.8) 73 (26.8)
cC

4(6.1)

8 (2.9) o
. 1.63 (0.94-2.84)

110 (0.58-2.07)

+37G/C Genotypes: Participants Without APOE €4

GG 74 (67.3) 493 (81.4) 1.00 1.00
GC 34 (30.9) 105 (17.3) 2.16 (1.37-3.41) 2.01 (1.20-3.37)
cC 2(1.8) 1.67 (0.35-8.00) 3.85 (0.74-19.98)

8(1.3)

212 (1.36-3.32)

2.08 (1.26-3.45)

+37G/C Genotypes: Participants With =1 APOE €4 Allele

GG 46 (82.1) 163 (78.0) 1.00 1.00

GC 8 (14.3) 43 (20.6) 0.66 (0.29-1.50) 0.54 (0.22-1.31)

GG 2(3.6) 3(1.4) 2.36 (0.38-14.56) 1.48 (0.19-11.54)

Risk of AD given =1 +37C alleles . . 0.77 (0.36-1.64) 0.61 (0.27-1.40)
-9G/C Genotypest

GG 141 (100) 685 (98.7)

GC 8(1.2)

CC 0 1(0.1)

*The univariate analysis shows the crude odds ratio (OR) for Alzheimer disease (AD), with GG as the reference genotype. The multivariate analysis corrects for
age, sex, and education. Gl indicates confidence interval; APOE €4, apolipoprotein-E e4. Values are for all ethnic groups, except where indicated.
1Slightly fewer genotypes were determined for this genotype than for the +37G/C genotype.

sults were not significant in the multivariate analysis
(Table 3). Of interest, in both the combined ethnic groups
and in the African American group, homozygosity for the
+37C allele was more common among patients with AD,
and, while the number of participants with this geno-
type was small, there was an apparent allele dosage effect
(Table 3). Also of interest is that the +37C allele was sig-
nificantly associated with AD in participants lacking an
APOE €4 allele (combined ethnic groups), and this re-
mained significant in the multivariate analysis (Table 3).
Although the numbers were small, a significant associa-
tion was not seen in participants with one or more APOE
€4 alleles (Table 3).

Since the allele frequencies differed by ethnicity, we
considered the possibility that the observed association
of the +37C allele with AD might be trivially explained
by genetic admixture in the 3 ethnic groups. Such con-
founding effects would be expected if the frequencies of

AD differed by ethnicity. As given in Table 2, the white
group had the lowest rate of AD, but the rates of AD did
not differ between the African American and Caribbean
Hispanic groups. Since most of the +37C genotypes oc-
curred in the latter 2 groups, genetic admixture is not a
likely explanation for the AD associations seen with this
marker.

ASSAYS FOR FUNCTIONAL EFFECTS OF
THE -9G/C AND +37G/C POLYMORPHISMS

The location of the 2 polymorphisms within regulatory
elements in the proximal 5’-flanking region of APP, which
accounts for most of the basal transcriptional activity of
the promoter,® suggests that they might influence tran-
scription. Moreover, alignment of human and mouse se-
quences shows that these polymorphisms were embed-
ded in strongly conserved sequences (Figure 2). A search
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of the TRANSFAC* (http://www.gene-regulation.com)
and TESS*" (http://www.cbil.upenn.edu/tess/) data-
bases using a 100-nucleotide sequence centered on these
changes was performed to determine if the polymor-
phisms affected predicted transcription factor binding
sites. As expected, several potential transcription factor
binding sites were altered: 276 sites were detected by TESS
with the -9G;+37G sequence, and 266 sites were de-
tected with the -9C;+37C sequence; the TRANSFAC
search returned fewer sites and showed a loss of 2 SP1
sites with the -9C;+37C sequence compared with the
-9G;+37G sequence. In addition, the -9G/C polymor-
phism is located 1 bp downstream of the sequences com-
prising the initiator box, which can determine transcrip-
tion initiation sites and transcription efficiency.*®

To test whether these sequence variants could cause
differences in APP transcription, we cloned a series of
matched 750 bp promoter fragments, containing the com-
mon -9G;+37G allele, or each of the 2 variant alleles
(-9C;+37G and -9G;+37C), upstream of the luciferase
reporter gene. These were transfected into human U-87
astrocytoma cells, a cell type that, like neurons, ex-
presses the APP gene.*** The minimal promoter region
strongly stimulated expression of the luciferase re-
porter gene, but luciferase activity was not significantly
altered by either of the sequence variants (Figure 3).

Human: ggtgccgagecggggtgggecggatcagetgactecgectggetcetgageecegeegeegeg
R AR R AR N R N T R A R AR RN N A
Mouse: ggtggcgagccgggtgggcgggatcagetgactctgecggetgegageececegeegeeteg

-9G/C TSS +37G/C
Human: ctcgGgctccgtcagtttcctcggcageggtaggcgagageacgeggag--Gagegtgeg
NI N N R R AR R R R R R A R N e N A
Mouse: ctccagctctgtcagtttcctcggecggecgggaggegagageaccgggagcagagegageg

g apacaraey
Mouse: cggggccaccggagacggeggeggeggeggeggeggegeggacacagecagggegeggeg

Figure 2. Alignment of the human amyloid precursor protein (APP)
promoter sequence spanning the -9G/C and +37G/C polymorphisms with the
corresponding murine sequence. Both polymorphisms (bold uppercase
letters) are embedded in well-conserved sequences. TSS indicates
transcription start site (bold lowercase letters). The murine sequence is from
GenBank (National Center for Biotechnology Information, National Library

of Medicine, National Institutes of Health, Bethesda, Md) accession

D10603.

The fact that linear changes in luciferase were observed
paralleling the amount of transfected plasmid DNA con-
firmed that this assay was not in the saturating range and
was therefore giving a valid readout of promoter activ-
ity (Figure 3).

B COMMENT

In principle, variations in promoter sequences can alter
gene expression directly by altering a transcription fac-
tor binding site or indirectly by changing the organiza-
tion of chromatin. Promoter variants with effects on the
transcriptional activity of certain human genes have been
identified, and genetic association studies have sug-
gested that some of these variants may be disease risk fac-
tors. Examples include promoter polymorphisms in the
tumor necrosis factor a gene, with effects on transcrip-
tion that are associated with increased morbidity in in-
fections, including malaria and leishmaniasis*; in the in-
terleukin 6 gene, which is associated with risk of coronary
heart disease and systolic blood pressure**; in the in-
terferon regulatory factor 1 gene, which can affect al-
lergy and responses to interferons***; in the beta-
fibrinogen gene, which contributes to regulation of plasma
fibrinogen concentration®; and in the insulin gene, which
is associated with type 1 diabetes mellitus.*” In PS1 and
APOE, genes that have strong effects on the risk of AD
when they contain coding changes, several promoter vari-
ants have also been identified. Although consistent find-
ings have yet to emerge from multiple studies, at least
one APOE polymorphism, -219G/T, may be associated
with altered promoter activity and an altered risk for
AD.*® Screening of the PS1 upstream region has iden-
tified several polymorphisms. Notably, promoter-
reporter analysis demonstrated a decrease in promoter
activity for 2 of the variant alleles, and 1 of these vari-
ants, —-48C/T, was associated with early-onset AD.”"* In
another study, polymorphisms in the PS1 promoter and
intron 8 were not associated with late-onset AD.>

In the current study, we have identified and char-
acterized 2 genetic variants, a common +37G/C poly-
morphism and a rare -9G/C variant, in the core se-
quences of the proximal APP promoter. The +37C allele

2000000+

1600000

1200000+

LUC (Arbitrary Light Emission Units)/b-gal

800000

pGL3 GG pGL3 GG pGL3 GG pGL3 -9C pGL3 -9C pGL3-9C pGL3 +37C pGL3 +37C pGL3 +37C pGL3
1.0 ug 0.4 pg 0.2 pg 1.0 ug 0.4 pg 0.2 pug 1.0 g 0.4 pg 0.2 pug Vector

Plasmid Construct

Figure 3. Activity of the amyloid precursor protein (APP) promoter containing the variant alleles in promoter-reporter assays. Plasmid constructs and the
amounts of specific plasmid DNA transfected are indicated on the x-axis. The -9C and +37C constructs differ from the control (-9G;+37G) constructs only at these
single positions. Although the activity of the -9C allele is slightly higher than the other constructs at the highest plasmid concentration tested, this difference is not
observed at lower concentrations. LUC indicates luciferase-catalyzed luminescence; b-gal, the optical density obtained from the 3-galactosidase reactions.
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was weakly associated with AD in a univariate analysis,
and there was a suggestion of an allele-dosage effect.
However, that association became nonsignificant in the
multivariate analysis. A significant association, in the
univariate and multivariate analyses, was observed in
participants lacking any APOE €4 allele. Although both
promoter polymorphisms were embedded in highly con-
served sequences, neither the -9G/C nor the +37G/C
variants affected basal promoter activity.

Future studies might include expanding the ge-
netic studies to larger cohorts and assessing the func-
tional effect of these polymorphisms on inducible, as op-
posed to basal, expression of APP messenger RNA.
Functional characterization has shown that the region
that we examined accounts for the bulk of the basal pro-
moter activity.'®**>3® This region also accounts for in-
ducible expression of APP messenger RNA in response
to stimuli and cell stress.'>** However, physiological regu-
lation of the APP gene is also influenced by sequences
situated more distally. The “APPB” sites, in the more dis-
tal promoter region at —1837/-1822 and -2250/-2241,
were shown to interact with a complex containing the
p50 subunit of NF-kB, which is constitutively ex-
pressed in neurons and acts as a positive regulator of gene
expression.”””® The distal APP promoter also harbors at
least one negative regulatory element, the upstream regu-
latory element between -2257 and -2234. This binds to
an unknown transcription factor present in neural lin-
eage cell lines and in brain extracts.?” These regions may
warrant genetic analysis in future studies.
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