

HHS Public Access

Author manuscript

Curr Alzheimer Res. Author manuscript; available in PMC 2025 August 22.

Published in final edited form as:

Curr Alzheimer Res. 2022 ; 19(12): 795–807. doi:10.2174/1567205020666221202102832.

Tripllication of *Synaptojanin 1* in Alzheimer's Disease Pathology in Down Syndrome

Robert Hwang Jr.¹, Lam-Ha Dang^{1,2,3}, Jacinda Chen¹, Joseph H. Lee^{1,2,3}, Catherine Marquer^{1,4,*}

¹Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA

²G.H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA

³Departments of Epidemiology and Neurology, Columbia University Medical Center, New York, NY, 10032, USA

⁴Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY, 10032, USA

Abstract

Down Syndrome (DS), caused by triplication of human chromosome 21 (Hsa21) is the most common form of intellectual disability worldwide. Recent progress in healthcare has resulted in a dramatic increase in the lifespan of individuals with DS. Unfortunately, most will develop Alzheimer's disease like dementia (DS-AD) as they age. Understanding similarities and differences between DS-AD and the other forms of the disease - *i.e.*, late-onset AD (LOAD) and autosomal dominant AD (ADAD) - will provide important clues for the treatment of DS-AD. In addition to the *APP* gene that codes the precursor of the main component of amyloid plaques found in the brain of AD patients, other genes on Hsa21 are likely to contribute to disease initiation and progression. This review focuses on *SYNJI*, coding the phosphoinositide phosphatase synaptojanin 1 (*SYNJI*). First, we highlight the function of *SYNJI* in the brain. We then summarize the involvement of *SYNJI* in the different forms of AD at the genetic, transcriptomic, proteomic and neuropathology levels in humans. We further examine whether results in humans correlate with what has been described in murine and cellular models of the disease and report possible mechanistic links between *SYNJI* and the progression of the disease. Finally, we propose a set of questions that would further strengthen and clarify the role of *SYNJI* in the different forms of AD.

Keywords

Synaptojanin 1; Down syndrome; Alzheimer's disease; late-onset; autosomal dominant; genetic association; neuropathology; disease models; *APP*; growth factor receptor-bound protein 2 (Grb2)

*Address correspondence to this author at the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY, 10032, USA, cm3244@columbia.edu.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

1. INTRODUCTION

Down Syndrome (DS), caused by triplication of human chromosome 21 (Hsa21) is the most common form of intellectual disability worldwide. As they age, the vast majority of individuals with DS will go on to develop an Alzheimer's disease like dementia (DS-AD) [1]. AD is characterized by the presence in the brain of extracellular amyloid plaques and intracellular neurofibrillary tangles [2]. The main components of amyloid plaques are amyloid β (A β) peptides derived from the proteolytic cleavage of the amyloid precursor protein (APP). As the *APP* gene is located on Hsa21, it is straightforward to hypothesize that its triplication would play a role in the development of DS-AD. Indeed, individuals with *APP* microduplications go on to develop DS-AD [3] and those with partial trisomies without an extra copy of the *APP* gene do not [4, 5]. However, evidence indicates that Hsa21 genes other than *APP* may also be important for the development of DS-AD [6].

In this review, we focus on the potential role of the triplication of the Hsa21 gene *SYNJ1*, coding the phosphoinositide phosphatase synaptojanin 1 (*SYNJ1*) on the development of AD and DS-AD.

2. SYNJ1 FUNCTION

Synaptojanin 1 (*SYNJ1*) is a member of the inositol-5-phosphatase family that is highly enriched at the nerve terminal [7]. It is coded by the *SYNJ1* gene on human chromosome 21q22.2 [8]. There are two naturally occurring synaptojanin 1 isoforms. The 145-kDa isoform was first discovered in 1994 as a phosphoprotein that interacts with growth factor receptor-bound protein 2 (Grb2) and participates with dynamin in synaptic vesicle endocytosis and recycling [9, 10]. Meanwhile, the 170-kDa isoform was later identified as a longer form of the protein, composed of two open reading frames instead of one [11]. Interestingly, while both isoforms are ubiquitously expressed, the 145-kDa isoform is highly enriched in the human brain - specifically localized on coated endocytic intermediates in nerve terminals - while the 170-kDa isoform is widely distributed throughout the body in non-neuronal cells [7, 11, 12].

SYNJ1 consists of three functional domains: a suppressor of actin1 (Sac1) homologous domain at its N-terminus, a 5'-phosphatase domain, and a proline-rich domain (PRD) at its C-terminus [7]. Both isoforms have this structure, although the 170-kDa isoform has a second C-terminal PRD due to the additional open reading frame [11] (Fig. 1A).

SYNJ1's PRD enables it to bind to the Scr homology 3 (SH3) domain of a variety of proteins involved in membrane trafficking and/or cellular signaling, such as Grb2, syndapin I, and BAR proteins like amphiphysin and endophilin [7, 9, 13–16] (Fig. 1A). Further, the additional C-terminal tail of the 170-kDa isoform contains binding sites for clathrin, clathrin adaptor protein complex 2 (AP2), and accessory factor Eps15 [12, 17] (Fig. 1A). Cyclin-dependent kinase 5 (Cdk5), a proline-directed serine/threonine protein kinase, is of particular interest as it plays key functions in neuronal migration, neurite outgrowth, synaptic plasticity and homeostasis, circadian clocks [18], and AD pathogenesis [18, 19]. Cdk5 regulates *SYNJ1* at synapses through phosphorylation, specifically inhibiting

its interaction with endophilin and consequently its activity (working antagonistically to calcineurin) [20].

Owing to its different functional domains and enrichment in nerve terminals, *SYNJI* has thus been implicated in the clathrin-dependent endocytosis of synaptic vesicles (SV) and in actin cytoskeleton function [9, 12, 21] (Fig. 1B). An early study demonstrated that *SYNJI*-deficient mice exhibited neurological defects and died shortly after birth. These mice also display an accumulation of clathrin-coated vesicles in their brains, strongly suggesting that *SYNJI* regulates clathrin coat shedding through the dephosphorylation of phosphoinositides [22]. Further supporting *SYNJI*'s involvement in SV endocytosis, mutations in the single synaptojanin (*unc-26*) gene of *C. elegans* also resulted in an accumulation of clathrin-coated vesicles, though additional defects were observed as well, including a depletion of SV, an accumulation of endocytic pits, a buildup of endosome-like compartments, and cytoskeletal tethering defects [23]. Likewise, the deletion of synaptojanin-like genes in yeast resulted in multiple phenotypes, such as a mislocalization of phosphatidylinositol (4,5)-bisphosphate (PtdIns(4,5)P₂) and defects in actin function/organization [24, 25]. Taken together, *SYNJI* mediates SV endocytic membrane trafficking in a variety of crucial ways.

Notably, endophilin - an adaptor coordinating membrane curvature acquisition with fission and uncoating of clathrin-coated vesicles - and amphiphysin - proposed to coordinate membrane curvature acquisition with fission - have been identified as important interactors with distinct binding sites on the PRD of *SYNJI*. Specifically, endophilin is required to recruit and stabilize *SYNJI* to clathrin-coated pit necks for SV uncoating after fission, while amphiphysin likely participates in *SYNJI* targeting as it does for dynamin [26–28]. A later study demonstrated *SYNJI*'s role in the progression of recycling vesicles to the functional SV pool, as rapid degradation of PtdIns(4,5)P₂ by its 5'-phosphatase domain is critical for efficient SV regeneration and the recovery of normal presynaptic function after prolonged stimulation [29].

SYNJI's PRD is not the only domain involved in SV endocytosis. As a later study has demonstrated, the dual action of both phosphatase domains is necessary for normal SV internalization and re-availability [30]. *SYNJI*'s Sac1-homologous domain particularly controls endocytosis during weak synaptic activity, as its 3- and 4-phosphatase function participates in the polymerization/depolymerization of actin cytoskeleton [30, 31]. A study conducted on mice with a *SYNJI* Sac1 domain mutation revealed an abnormal accumulation of clathrin-coated intermediates as well, further supporting the theory of a functional partnership between both of *SYNJI*'s phosphatase domains in clathrin-coat dynamics [32]. One notable exception is the discovery that *SYNJI*, along with endophilin, mediates neck formation of endocytic pits during ultrafast endocytosis- a process that involves the 5'-phosphatase domain exclusively, not the Sac1-like domain [33].

Most research thus far has focused on *SYNJI*'s presynaptic role in SV endocytosis. However, there is evidence that *SYNJI* has a postsynaptic function as well, specifically in the regulation of glutamate AMPA receptor trafficking (Fig. 1B). A study using *SYNJI* knockout mice found enlarged miniature excitatory postsynaptic current (mEPSC) amplitudes in comparison to wild-type (WT) mice, which were attributed to an increase in

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

surface-exposed AMPA receptors. This strongly suggests that *SYNJI* is a key component in the internalization of AMPA receptors and thus a vital regulator of postsynaptic AMPA responses [34]. A likely explanation for this is *SYNJI*'s observed role in PtdIns(4,5)P₂ metabolism, as increased levels of PtdIns(4,5)P₂ have been shown to lead to actin dysfunction and alterations in synaptic structure that could consequently affect AMPA receptor responses [34, 35].

Furthermore, *SYNJI*'s role in the autophagy pathway is an area of recent interest (Fig. 1B). One study was conducted on *drosophila* with a Parkinson's disease-causing mutation that nullifies solely *SYNJI*'s Sac1-like domain, resulting in neurodegeneration and an accumulation of Atg18a - a binding protein of PtdIns(3)P and PtdIns(3,5)P₂ -, indicating that the intact function of *SYNJI*'s Sac1 domain is required for successful autophagosome maturation at presynaptic terminals [36]. Likewise, mutations of the *SYNJI/unc-26* allele in *C. elegans* resulted in mislocalization of ATG-9, a transmembrane protein of the core autophagy machinery, as well as in defects in activity-induced synaptic autophagy and sustained neurotransmission [37]. In addition, it has been reported that heterozygous deletion of *SYNJI* in mice leads to the enhancement of autophagy markers LC3 and p62, along with hyperactive basal autophagosome formation in astrocytes. Both results further support *SYNJI* as a crucial mediator of neuronal autophagy [38, 39]. Interestingly, one study analyzing the zebrafish cone photoreceptor inner segments found through mutational analysis of *SYNJI* enzymatic domains that the 5'-phosphatase domain activity, but not the Sac1 domain, was required to rescue both aberrant late endosomes and autophagosomes [40, 41]. Thus, both phosphatase domains likely work in cooperation to regulate the autophagy pathway, falling in line with the previously discussed dual-action model of *SYNJI* [30].

3. **SYNJI IN ALZHEIMER'S DISEASE: GENETIC ASSOCIATION STUDIES**

Most genetic association studies of Alzheimer's disease have been conducted in general (neurotypical) populations, and publications on the *SYNJI* gene in DS are sparse. Thus, we will first discuss the genetic association of *SYNJI* in the general populations and then discuss that in high-risk populations, including DS and Autosomal Dominant Alzheimer's Disease (ADAD) (Table 1).

3.1. **Late Onset Alzheimer's Disease (LOAD)**

The recent large meta-analysis study by Bellenguez and colleagues failed to show any significant allelic association between variants in the *SYNJI* gene and AD-related traits [42]. This study examined a total of 788,989 individuals (111,326 AD cases and 677,663 controls) and showed no significant association. Similarly, the earlier large-scale meta-analysis studies by Kunkle *et al.* [43] and Jansen and colleagues [44, 45] did not show a significant association between variants in the *SYNJI* gene and AD-related traits. These studies had sufficient statistical power to detect allelic association when variants were rare (*i.e.*, minimum allele frequency 1%). However, when the effect sizes of the identified variants are weak to modest, studies have limited power to detect genetic modifiers that interact with other genetic variants. For example, in the study by Kunkle *et al.* the identified variants had effect sizes ranging from 0.88 to 2.01, with the exception of *APOE*, which

had an effect size of 3.32 [43]. Given the fact that identified genetic variants in the general population have weak to modest effects, their interactions with variants in *SYNJ1* would be difficult to detect. This becomes a study design issue, where it would be more powerful to examine the role of the *SYNJ1* gene in high-risk cohorts where primary genetic factors have strong effects. To further strengthen statistical power to identify and characterize genetic contributions, it is ideal to examine intermediate endophenotypes (e.g., protein levels, metabolites, memory performance, or age at onset of AD) that are closer to the actions of the gene [46, 47]. For example, Gieger *et al.* have shown that multiple endophenotypes that characterize multiple omic layers representing physiological states can shed light on complex biological processes [48].

3.2. High Risk Down Syndrome (DS)

Studies of the *SYNJ1* gene for AD in adults with DS can be particularly insightful to understand the biology given that the gene with extra allelic dosage is located on 21q22.11, thereby allowing the dosage effect beyond having two copies of rare homozygous variants on AD-related phenotypes. To date, however, most genetic association studies of adults with DS have been focusing on candidate genes that were identified from the general population due to the small sample size of studies on adults with DS leading to limited statistical power to detect risk variants without strong effects. Thus, there are currently no published studies examining the overall effects of genetic variants in *SYNJ1* on the risk to develop DS-AD. There are, however published studies investigating *SYNJ1* RNA and protein levels in DS-AD (see Section 4.2). Measuring these gene-associated biomarkers in high-risk cohorts can enhance power, but the costs of these assays have been prohibitive thus far. As next-generation sequencing and biomarker assays have become more affordable, large scale genetic studies and associated biomarker measurements [49] are currently underway in adults with DS.

3.3. High Risk Autosomal Dominant Alzheimer's Disease (ADAD)

Individuals with ADAD, along with DS, can shed light on the role of *SYNJ1* in the neurodegenerative processes leading to AD as the effect sizes of their primary genetic risk factors are substantial [50]. The three genes that have been implicated in ADAD are the amyloid precursor protein (*APP*) gene on 21q21.3, presenilin 1 (*PSEN1*) on 14q24.2, and presenilin 2 (*PSEN2*) on 1q42.13. *PSEN1* and *PSEN2* encode for the presenilin 1 and presenilin 2 proteins, as part of the γ -secretase complex, and are responsible for cleaving *APP* into A β peptides. As with individuals with DS, those with autosomal dominant genes tend to have early onset of cognitive decline and high prevalence of AD and suffer from the burden of high levels of A β peptides. Carriers of these genes can provide insight into genetic modifiers where these genes can alter the phenotypes in the presence of high amyloid β peptides. To explore this possibility, we examined a collection of Puerto Rican *PSEN1*-G206A mutation carrier families [51]. We identified SNP variants in the *SYNJ1* gene that were associated with delayed age at onset in families with early onset familial AD. This finding was further extended to late-onset familial AD. Specifically, we showed that 3- and 4-SNP haplotypes were associated with delayed age at onset of AD by 8–10 years. Subsequently, the haplotypes that were associated with a delay in age at onset of AD

were also associated with enhanced memory performance, further supporting the biological plausibility.

4. **SYNJ1 IN ALZHEIMER'S DISEASE: EXPRESSION IN HUMAN BRAINS AND NEUROPATHOLOGY**

Another way to assess the relevance of *SYNJ1* to the etiopathology of AD is to investigate whether levels of *SYNJ1* transcripts and *SYNJ1* protein vary as a function of the occurrence and progression of AD neuropathology, cognitive impairment, or both (Table 1).

4.1. Late Onset Alzheimer's Disease (LOAD)

Multiple large-scale transcriptomic studies in the general population have reported that *SYNJ1* is expressed above the significance threshold in all brain regions [52, 53]. Using a combination of datasets publicly available through the AD Knowledge Portal investigating differential RNA expression between LOAD cases and controls, adjusting for potential confounders including sex (accession code syn9702085) [54–56], we have observed that RNA expression of *SYNJ1* in LOAD cases is decreased in the temporal cortex (Log2FC = -0.34833 , P_{FDR} corrected = 1.73E-6), parahippocampal gyrus (Log2FC = -0.42654 , P_{FDR} corrected = 7.55E-9), inferior frontal gyrus (Log2FC = -0.2749 , P_{FDR} corrected = 0.0007), and superior temporal gyrus (Log2FC = -0.2544 , P_{FDR} corrected = 0.002) regions, compared to controls. While *SYNJ1* was not significantly differentially expressed in other investigated brain regions, expression in LOAD brains additionally trended downwards for all other regions except the cerebellum. We note that there were no significant differences in *SYNJ1* expression between *APOE4* carriers and non-carriers across all investigated brain regions. Together, these findings suggest that *SYNJ1* may be broadly downregulated in LOAD brains. However, these observations must be mitigated by the fact that *SYNJ1* is a synaptic protein and that differentiating between overall synaptic loss and specific *SYNJ1* downregulation at autopsy at very advanced stages of LOAD may be difficult.

Proteomic studies of the brain tissues in the general neurotypical population show conflicting evidence with respect to *SYNJ1* levels in LOAD. Higginbotham *et al.* have examined differential protein expression between LOAD cases and age- and gender-matched controls in the dorsolateral prefrontal cortex (DLPFC) and have consistently observed higher levels of the *SYNJ1* protein in DLPFC tissues of LOAD cases compared with those from controls (P_{nominal} = 3.3E-3), mixed AD/Parkinson's disease (PD) cases (P_{nominal} = 0.0464), and PD cases (P_{nominal} = 4.9E-4) [57]. A similar trend of elevated *SYNJ1* in DLPFC tissues of AD cases (compared with controls, P_{nominal} = 6.5E-3, asymptomatic AD, P_{nominal} = 0.0297) has also been observed in the replication stage of this study [57]. In a separate meta-analysis of tissues across four different cohorts [58] (AD Knowledge Portal, accession code syn2580853), however, we have observed that *SYNJ1* protein levels are significantly lower in DLPFC tissues (P_{FDR} = 1.3E-7) of LOAD cases compared to controls. In meta-analyses, there are no significant differences in *SYNJ1* levels in anterior prefrontal cortex and temporal cortex. These conflicting results may in part, be explained by additional evidence stemming from studies specifically focusing on *SYNJ1* in LOAD brains, although

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

differences in extraction protocols and disease characterization (e.g., Braak stage *vs.* clinical dementia rating (CDR)) hinder proper data homogenization.

Using immunohistochemistry, *SYNJ1* was found to be increased in hippocampal neurons of LOAD brains compared to controls [59]. *SYNJ1* accumulates in plaque-associated dystrophic neurites and in some neurofibrillary tangles in LOAD brains [59]. Interestingly, *SYNJ1* also accumulates in Hirano bodies [59], intracellular rod-like aggregates enriched in actin and actin-binding proteins [60]. Whether this association is biologically relevant to *SYNJ1*'s function in the maintenance of the actin network (see Section 2) remains to be investigated.

At advanced stages of the disease, *SYNJ1* mRNA levels are increased in the cortex of LOAD patients compared to controls and correlate with the amount of phosphorylated tau [59]. In contrast, at advanced stages of the disease, *SYNJ1* protein levels are decreased in the total homogenate and in the detergent (SDS or RIPA)-soluble fraction of LOAD cases compared to controls [59, 61]. However, *SYNJ1* protein levels are increased in the detergent-insoluble fraction of LOAD cases compared to controls and correlate with the amount of phosphorylated tau in this fraction [59]. Moreover, *SYNJ1* co-precipitates with paired helical filament (PHF)-tau after sarkosyl fractionation [59]. This intriguing association of tau and *SYNJ1* will require further investigation.

The most potent genetic risk factor for LOAD is the e4 allele of the *APOE* gene (*APOE4*) [42, 62] and experimental evidence supports the existence of a relationship between *SYNJ1* levels and carrying the *APOE4* allele. At advanced stages of the disease, *SYNJ1* staining is increased in the hippocampus of LOAD cases carrying one or two *APOE4* alleles compared to those without an *APOE4* allele [59]. *SYNJ1* mRNA levels are increased in cases carrying an *APOE4* allele compared to cases carrying no *APOE4* allele in a control-aged cohort (CDR 0) and in cases with mild AD (CDR 0.5–1) [63]. *SYNJ1* mRNA levels are also increased in *APOE4* carriers compared to non-*APOE4* carriers within a cohort of late-stage LOAD cases (Braak V-VI) [59]. However, such a difference is not observed in the control group of this latter study. *SYNJ1* protein levels are also increased in cases carrying an *APOE4* allele compared to cases carrying no *APOE4* allele in a control-aged cohort (CDR 0) and in cases with mild AD (CDR 0.5–1) [63]. However, *SYNJ1* protein levels were similar between *APOE4* carriers and non-carriers at advanced stages (CDR 3) [63]. In addition, although *SYNJ1* protein levels are overall decreased in the detergent-soluble fraction of late stage LOAD cases (Braak V-VI) compared to controls [59], a finer dissection revealed differences between *APOE4* carriers and non-carriers LOAD cases. Indeed, within the LOAD cohort, *SYNJ1* protein levels are increased in cases carrying one or two *APOE4* allele(s) compared to cases carrying no *APOE4* allele in the detergent-soluble fraction [59].

Altogether, the levels of *SYNJ1* transcripts and *SYNJ1* protein seem intimately linked with LOAD. However, the stage of the disease, whether cognition- or neuropathology-based, as well as the protocols used to extract and quantify transcripts and proteins, profoundly affect the reported results. Nevertheless, the increase in *SYNJ1* levels in *APOE4* carriers as well as the accumulation of *SYNJ1* with phosphorylated Tau and Hirano bodies, strongly support that *SYNJ1* plays a robust role in LOAD disease progression.

4.2. High Risk Down Syndrome (DS)

Sharma *et al.* conducted a bioinformatic integrative study to identify the genes that may be associated with AD in DS by integrating the results from the bioinformatic search of Alzheimer's in DS, and genes identified from the differential gene expression study of the dorsal frontal cortex (DFC) and cerebral cortex in the Down Syndrome Developmental Brain Transcriptome database [64]. Their exploratory analysis supports that *SYNJ1* contributes to the pathogenesis of AD in DS, however, experimental evidence is needed for confirmation.

SYNJ1 protein levels are increased in the brain of individuals with DS compared to disomic controls at the gestational stage, in childhood and in young adults [61, 65, 66]. Recent single cell RNA sequencing data support that this increase is heightened in inhibitory neurons and microglia [67]. Interestingly, in older individuals with DS-AD, there is a very large increase in *SYNJ1* levels compared to age-matched disomic controls, and the difference between DS and disomic individuals is much greater than at a younger age [59, 61]. Moreover, in older individuals with DS-AD, levels of *SYNJ1* inversely correlate with levels of synaptophysin, a synaptic marker and an indicator of synaptic health [51]. Taken together, these results strongly suggest that elevated levels of *SYNJ1* observed in populations at high risk for developing AD could directly affect synaptic structure, function, or both.

4.3. High Risk Autosomal Dominant Alzheimer's Disease (ADAD)

Little is known on the levels of *SYNJ1* in ADAD brains, mostly because ADAD represents only about 1% of all AD cases and such brains are therefore rare. A recent study has investigated *SYNJ1* levels in two ADAD brains, an *APP*-V717I mutation carrier with *APOE3/3* genotype and a *PSEN1*-R35E/E120D with *APOE4/3* genotype. Although it is impossible to draw definitive conclusions with such a small sample size, results obtained on *SYNJ1* mRNA levels and *SYNJ1* solubility are comparable overall between ADAD and LOAD brains [59]. Importantly, *SYNJ1* co-precipitates with paired helical filament (PHF)-tau after sarkosyl fractionation in an ADAD brain, similar to what is observed in LOAD brains [59]. It would be extremely interesting to carry out a systematic study of *SYNJ1* levels in ADAD brains with different *APP*, *PSEN1* and *PSEN2* mutations.

5. **SYNJ1 IN ALZHEIMER'S DISEASE: CELLULAR AND MURINE MODELS**

An important tool to support our understanding of disease mechanisms and progress towards potential therapies is disease modeling, whether in animal or cellular model systems (Table 2).

5.1. Late Onset Alzheimer's Disease (LOAD)

Although defining an accurate model to study LOAD is still a matter of intense debate in the field, we have decided to focus here on ApoE4 models, as carrying an *APOE4* allele is the most potent genetic risk factor to develop LOAD [42, 62], as stated previously.

SYNJ1 mRNA levels and *SYNJ1* protein levels are increased in the cortex and hippocampus of human *APOE4/4* knock-in (KI) mouse models, compared to *APOE3/3* KI mouse models [63], in good accordance with what was observed in human *APOE4* carrier brains. This

increase in *SYNJI* levels is functionally relevant as genetically decreasing *SYNJI* levels in *APOE4* KI mice rescues the cognitive deficits exhibited by these mice [63].

Interestingly, levels of *SYNJI* were comparable in *APOE4/4* KI and in *ApoE* null (knock-out) mice, but much lower in *APOE3/3* KI mice [63]. In addition, in primary cultures of hippocampal *ApoE* null neurons, incubation with conditioned media derived from *APOE3/3* astrocytes, but not *APOE4/4* or *ApoE* null astrocytes, leads to a reduction of *SYNJI* levels via accelerated degradation of *SYNJI* mRNA [63]. Altogether, these results suggest that *APOE4* displays a loss-of-function effect towards *SYNJI* and cannot promote *SYNJI* mRNA degradation and subsequent decreased *SYNJI* levels [63].

As mRNA stability can be regulated by micro-RNA (miRNA) binding to 3'-UTR regions of mRNA, the same group further tested whether *SYNJI* expression may be differentially regulated by *ApoE* isoforms through modulation of miR-195 [68]. miR-195 levels are reduced in the cortex of human *APOE4* carriers with mild cognitive impairment (MCI) and early AD (CDR 0.5–1) compared to non-*APOE4* carriers. However, no such difference was observed in a cohort of normal aging (CDR 0) or at advanced stages (CDR 3). miR-195 levels are also reduced in *ApoE4/4* KI mouse brains compared to *ApoE3/3* KI mice. In addition, in primary cultures of hippocampal *ApoE* null neurons, incubation with conditioned media derived from *APOE4/4* astrocytes leads to lower miR-195 levels compared to conditioned media from *APOE3/3* astrocytes. Over-expressing miR-195 significantly reduces *SYNJI* protein levels in *ApoE* null neurons, as well as in *ApoE3/3* and *ApoE4/4* neurons, supporting that upregulation of miR-195 can modulate *SYNJI* expression levels. In addition, viral delivery of miR-195 in the hippocampus of *APOE4/4* KI mice with or without a transgenic AD background rescues cognitive deficits and reduces tau hyper-phosphorylation. A reduction in A β 42 oligomers and amyloid plaque burden was also observed, specifically in the transgenic AD background [68].

The same authors also used human induced pluripotent stem cells (iPSCs)-derived neurons and astrocytes co-cultures from an *APOE4/4* LOAD patient or an *APOE3/3* control. Over-expressing miR-195 significantly reduces the enlargement of lysosomes observed in human *APOE4/4* neurons and reduces phosphorylated tau levels in these cells [68]. Using an elegant combination of *SYNJI*^{+/+} and *SYNJI*^{-/-} neurons co-cultured with *APOE4/4* iPSC-derived astrocytes, they showed that lysosomal size was reduced in *SYNJI*^{-/-} neurons compared to *SYNJI*^{+/+} neurons. Furthermore, over-expressing miR-195 did not have an additional effect on lysosomal size in *SYNJI*^{-/-} neurons, strongly suggesting that miR-195 acts through the control of *SYNJI* levels on lysosomal homeostasis [68]. Altogether, the authors provide solid evidence for a mechanistic link between *APOE4* and *SYNJI* levels. Specifically, they propose that carrying an *APOE4* allele results in having less miR-195, causing a defect in the degradation of *SYNJI* mRNA and ultimately leading to increased *SYNJI* levels.

In the context of LOAD, it is interesting to focus on a transgenic mouse model overexpressing murine *SYNJI*, Tg(*SYNJI*) [69]. We have reported that these mice express about 75% more *SYNJI* than their littermate controls (wild-type (WT)) at older ages (19 months old) [51] which closely recapitulates the overexpression levels (+73%) described in

APOE4 carriers with early AD (CDR 0.5–1) [63]. This increase is, however, milder than the overexpression levels in individuals with DS-AD (+155% compared with age-matched disomic controls) [61]. These mice were initially generated in the Antonarakis lab on the FVB background using mouse BAC RPCI-23 402J16 [69]. Of note, this BAC also contains two additional complete genes, the mouse orthologs of C21orf59 and C21orf66 [69], and contributing effects from these genes cannot be excluded. Three- to four-month-old Tg(*SYNJI*) mice with a mixed FVB/C57BL/6 background exhibit a milder *SYNJI* increase (~ 40%). They do not show deficits in the Morris water maze paradigm but perform slightly worse than control animals in the reverse platform test variation of this paradigm. They also show no differences in basal neurotransmission and synaptic plasticity [69]. Interestingly, it has been reported that Early Endosome Antigen 1 (EEA1)-positive early endosomes are enlarged in the prefrontal cortex of Tg(*SYNJI*) compared to WT littermates [70]. The enlargement of early endosomes is one of the earliest cellular phenotypes of AD pathogenesis, preceding even amyloid deposition [71]. Endosomal abnormalities are accelerated in the brains of *APOE4* carriers and can be observed in the brains of individuals with DS from the youngest age [71]. Nine-month-old Tg(*SYNJI*) mice with a C57BL/6 background perform similarly to their WT littermates in the radial arm water maze (RAWM) and fear conditioning (FC) paradigms [51]. However, at nineteen-month old, when *SYNJI* increase is ~ 75%, Tg(*SYNJI*) mice show a significantly higher number of errors in the RAWM compared with WT mice, as well as a specific decrease in freezing in contextual but not in cued conditioning compared with WT mice, suggesting hippocampal but not amygdala impairment [51]. We also reported that age-dependent cognitive deficits were significantly more pronounced in Tg(*SYNJI*) than in WT littermates [51]. These cognitive deficits are not due to obvious synaptic loss, as levels of pre-and post-synaptic proteins are similar in transgenic and WT animals. However, using *in vivo* electrophysiology, we found that elevated levels of *SYNJI* trigger acute hyperexcitability as well as dramatic defects in the spatial reproducibility of place fields in the hippocampus of older Tg(*SYNJI*) animals [51]. Taken together, these results indicate that having higher levels of *SYNJI* increases cognitive deficits over time, by impacting hippocampal synaptic function.

5.2. High Risk Down Syndrome (DS)

SYNJI levels are increased by ~40% in Ts65Dn mice, one of the most used models of DS. This is accompanied by a decrease in PtdIns(4,5)P₂, one of the lipids that can be targeted by *SYNJI*. In addition, genetically restoring *SYNJI* copy number is sufficient to increase PtdIns(4,5)P₂ levels to control conditions [69].

Lymphoblastoid cell lines (LCLs) and fibroblasts derived from individuals with DS show increased levels of *SYNJI* as well as enlarged endosomes [70]. An elegant study using LCLs from individuals with partial trisomies highlighted that the segment of Hsa21 containing *SYNJI* was sufficient to induce the enlargement of early endosomes [70]. Furthermore, overexpressing *SYNJI* in SH-SY5Y neuroblastoma cell lines is sufficient to recapitulate endosomal enlargement and decreasing *SYNJI* levels in DS fibroblasts by a shRNA approach leads to a decrease in the percentage of larger endosomes [70].

A recent study used human iPSCs-derived neurons from two individuals with DS and compared them with their euploid isogenic controls [72]. DS neurons showed higher levels of *SYNJ1*, as well as higher secreted A β peptides, higher phosphorylated tau, impaired lysosomal transport and increased synaptic vesicle release. Restoring *SYNJ1* copy number to disomy did not rescue A β peptide secretion or tau phosphorylation, in contrast to restoring *APP* copy number [72]. Of note, this study did not report the effect of restoring *SYNJ1* copy number to disomy on the lysosomal and synaptic vesicle phenotypes.

5.3. High Risk Autosomal Dominant Alzheimer's Disease (ADAD)

Overexpressing the inositol 5-phosphatase domain of synaptojanin 1 resulted in enhanced levels of A β 42 peptide, likely through the reduction of PtdIns(4,5)P₂ levels [73]. Landman and colleagues highlighted that such PtdIns(4,5)P₂ reduction and A β 42 increase was recapitulated in cells expressing *PSEN1* or *PSEN2* ADAD mutations compared to control cells [73].

Two independent studies have reported that genetically decreasing *SYNJ1* levels in ADAD mouse models alleviate learning and memory deficits [74, 75]. One group proposed that *SYNJ1* reduction is protective against the effect of A β oligomers on PtdIns(4,5)P₂ decrease, long-term potentiation (LTP) impairment and synaptic toxicity [74, 76], while the other proposed that *SYNJ1* reduction leads to increased A β uptake and degradation [75].

CONCLUSION AND PERSPECTIVES

As we highlighted previously [51] and further illustrate in this review, *SYNJ1* is important for all forms of AD, whether LOAD, DS-AD, or ADAD. Of note, we did not develop select aspects of AD, DS and *SYNJ1* biology in this manuscript as they have been the focus of recent reviews (*e.g.*, the endo-lysosomal pathway in DS and AD [77, 78] or the dysregulation of phosphoinositides in AD [79]).

We have reported intronic variants in *SYNJ1* that are associated with ADAD [51] and have recently discovered two *SYNJ1* mutations associated with the age of onset of ADAD (J.H.L., unpublished). Very little is currently known about the association of *SYNJ1* with DS-AD. However, we expect that large efforts such as the ABC-DS project [49] will generate a valuable set of data on the genome, proteome, and metabolome along with imaging that can be used to further investigate this question. Altogether, it would be interesting to investigate the functional effects of current and future *SYNJ1* variants to delineate: (i) the nature of the pathways affected by these variants, *e.g.*, endolysosomal pathway, autophagy, synaptic vesicle release, amyloid or tau pathology, and (ii) whether possible *SYNJ1* variants in DS-AD show structural or functional similarities with variants in ADAD. Future understanding of the functional relevance of *SYNJ1* variants combined with advances in structure and modeling [80] will be key vectors in delineating potential therapeutic strategies targeting *SYNJ1* in DS and AD.

Although we focus on DS and AD in this review, it is important to note that *SYNJ1* mutations have been associated with other disorders, such as bipolar disorder [81], epilepsy [82] and Parkinson's disease [83–87], as recently reviewed [88]. It would also be

informative to investigate whether current and future *SYNJI* variants in DS-AD and ADAD show structural or functional similarities with mutations described in these disorders.

Below, we highlight a few additional unanswered questions.

- i.** Late Onset Alzheimer's Disease (LOAD) and High Risk Autosomal dominant Alzheimer's Disease (ADAD)
 - a.** In human LOAD, is the association of *SYNJI* with Hirano bodies linked to its function in the dynamics of actin?
 - b.** In human ADAD, are there differences in *SYNJI* expression and solubility as a function of the ADAD-causing mutation?
 - c.** Are the beneficial effects of genetically decreasing *SYNJI* on cognitive deficits observed in models of ADAD and LOAD mediated at least in part by lowering hippocampal hyperactivity?
- ii.** High Risk Down Syndrome (DS)
 - a.** In human DS, *SYNJI* levels are much higher in older individuals than in younger individuals. What is driving this rise in *SYNJI* levels?
 - b.** In human iPSCs-derived neurons from individuals with DS, would restoring *SYNJI* copy number to disomy rescue the lysosomal and synaptic vesicle phenotypes?
 - c.** Are there differences in *SYNJI* expression and *SYNJI* levels in iPSCs-derived neurons isolated from: (1) a young *vs.* an older individual with DS, (2) an older individual with DS without or with DS-AD?

Finally, most studies performed thus far have focused individually on *SYNJI* and other Hsa21 genes. However, moving forward, it would be interesting to test potential functional interactions between *SYNJI* and other Hsa21 genes in the context of DS-AD. As also proposed by others [69, 70], some candidates of interest include *ITSNI*, coding Intersectin 1, *DYRK1A*, coding Dual Specificity Tyrosine Phosphorylation Regulated Kinase 1A (DYRK1A) and *RCAN1* (also called *DSCR1*), coding Regulator Of Calcineurin 1 (RCAN1). Intersectin1 binds to *SYNJI* [89] and overexpressing its homolog dap160 alters the subcellular distribution of synaptojanin in *drosophila* models [90]. DYRK1A can phosphorylate *SYNJI* and modulate its activity [91–93]. RCAN regulates calcineurin, which mediates the dephosphorylation of *SYNJI* [20] and overexpressing its homolog nla regulates synaptojanin activity in *drosophila* models [90].

In conclusion, although *SYNJI* has been thoroughly investigated in the normal and diseased brain over the years, additional evidence and key mechanistic pathways remain to be identified to offer concrete therapeutic avenues targeting *SYNJI* in neurodegenerative disorders.

ACKNOWLEDGEMENTS

We thank the participants of the Religious Order Study and Memory and Aging projects for the generous donation, the Sun Health Research Institute Brain and Body Donation Program, the Mayo Clinic Brain Bank, and the Mount

Sinai/JJ Peters VA Medical Center NIH Brain and Tissue Repository. Data and analysis contributing investigators include Nilüfer Ertekin-Taner, Steven Younkin (Mayo Clinic, Jacksonville, FL), Todd Golde (University of Florida), Nathan Price (Institute for Systems Biology), David Bennett, Christopher Gaiteri (Rush University), Philip De Jager (Columbia University), Bin Zhang, Eric Schadt, Michelle Ehrlich, Vahram Haroutunian, Sam Gandy (Icahn School of Medicine at Mount Sinai), Koichi Iijima (National Center for Geriatrics and Gerontology, Japan), Scott Noggle (New York Stem Cell Foundation), Lara Mangravite (Sage Bionetworks).

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health and by NCI, NHGRI, NHLBI, NIDA, NIMH, and NINDS. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on 04/18/2022.

FUNDING

This work was supported in part by fundings from the Thompson Family Foundation program for accelerated medicines exploration in Alzheimer's disease and related disorders of the nervous system (CM) and the NIH/NIA [Grant no's. U19 AG068054, U01 AG051412, UL1TR001873, R01 AG058918, R01 AG058918 S1] (JL).

The results published here are in whole or in part based on data obtained from the AD Knowledge Portal (<https://adknowledgeportal.org>). Data generation was supported by the following NIH grants: P30AG10161, P30AG72975, R01AG15819, R01AG17917, R01AG036836, U01AG46152, U01AG61356, U01AG046139, P50 AG016574, R01 AG032990, U01AG046139, R01AG018023, U01AG006576, U01AG006786, R01AG025711, R01AG017216, R01AG003949, R01NS080820, U24NS072026, P30AG19610, U01AG046170, RF1AG057440, and U24AG061340, and the Cure PSP, Mayo and Michael J Fox foundations, Arizona Department of Health Services and the Arizona Biomedical Research Commission.

LIST OF ABBREVIATIONS

AD	Alzheimer's Disease
ADAD	Autosomal Dominant Alzheimer's Disease
AMPA	α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
APP	Amyloid Precursor Protein
BAC	Bacterial Artificial Chromosome
BAR	Bin/Amphiphysin/RVS
Cdk5	Cyclin-dependent Kinase 5
CDR	Clinical Dementia Rating
DS	Down Syndrome
EEA1	Early Endosome Antigen 1
FC	Fear Conditioning
Grb2	Growth Factor Receptor-bound Protein 2
Hsa21	Human Chromosome 21
iPSCs	Induced Pluripotent Stem Cells
KI	Knock-in
LCLs	Lymphoblastoid Cell Lines
LOAD	Late Onset Alzheimer's Disease

LTP	Long-term Potentiation
MCI	Mild Cognitive Impairment
mEPSC	Miniature Excitatory Postsynaptic Current
miR	microRNA
PHF	Paired Helical Filament
PRD	Proline-rich Domain
PtdIns(4,5)P2	Phosphatidylinositol (4,5)-bisphosphate
RAWM	Radial Arm Water Maze
Sac1	Suppressor of Actin 1
SH3	Scr Homology 3
SNP	Single Nucleotide Polymorphism
SV	Synaptic Vesicles
SYNJI	Synaptojanin 1
WT	Wild-type

REFERENCES

- [1]. Lott IT, Head E. Dementia in Down syndrome: Unique insights for Alzheimer disease research. *Nat Rev Neurol* 2019, 15(3): 135–47. 10.1038/s41582-018-0132-6 [PubMed: 30733618]
- [2]. Knopman DS, Amieva H, Petersen RC. Alzheimer disease. *Nat Rev Dis Primers* 2021, 7(1): 33. 10.1038/s41572-021-00269-y [PubMed: 33986301]
- [3]. Rovelet-Lecrux A, Hannequin D, Raux G. APP locus duplication causes autosomal dominant early-onset Alzheimer disease with cerebral amyloid angiopathy. *Nat Genet* 2006, 38(1): 24–6. 10.1038/ng1718 [PubMed: 16369530]
- [4]. Prasher VP, Roberts E, Norman A, Butler AC, Krishnan VH, McMullan DJ. Partial trisomy 22 (q11.2-q13.1) as a result of duplication and pericentric inversion. *J Med Genet* 1995, 32(4): 306–8. 10.1136/jmg.32.4.306 [PubMed: 7643363]
- [5]. Doran E, Keator D, Head E. Down syndrome, partial trisomy 21, and absence of Alzheimer's disease: The role of APP. *J Alzheimers Dis* 2017, 56(2): 459–70. 10.3233/JAD-160836 [PubMed: 27983553]
- [6]. Wiseman FK, Pulford LJ, Barkus C. Trisomy of human chromosome 21 enhances amyloid- β deposition independently of an extra copy of APP. *Brain* 2018, 141(8): 2457–74. 10.1093/brain/awy159 [PubMed: 29945247]
- [7]. McPherson PS, Garcia EP, Slepnev VI. A presynaptic inositol-5-phosphatase. *Nature* 1996, 379(6563): 353–7. 10.1038/379353a0 [PubMed: 8552192]
- [8]. Cremona O, Nimmakayalu M, Haffner C, Bray-Ward P, Ward DC, De Camilli P. Assignment of *SYNJI* to human chromosome 21q22.2 and *SYNJI2* to the murine homologous region on chromosome 16C3–4 by *in situ* hybridization. *Cytogenet Cell Genet* 2000, 88(1–2): 89–90. 10.1159/000015493 [PubMed: 10773674]
- [9]. McPherson PS, Czernik AJ, Chilcote TJ. Interaction of Grb2 its Src homology 3 domains with synaptic proteins including synapsin I. *Proc Natl Acad Sci USA* 1994, 91(14): 6486–90. 10.1073/pnas.91.14.6486 [PubMed: 8022809]

[10]. McPherson PS, Takei K, Schmid SL, De Camilli P. p145, a major Grb2-binding protein in brain, is co-localized with dynamin in nerve terminals where it undergoes activity-dependent dephosphorylation. *J Biol Chem* 1994, 269(48): 30132–9. 10.1016/S0021-9258(18)43787-8 [PubMed: 7982917]

[11]. Ramjaun AR, McPherson PS. Tissue-specific alternative splicing generates two synaptosomal isoforms with differential membrane binding properties. *J Biol Chem* 1996, 271(40): 24856–61. 10.1074/jbc.271.40.24856 [PubMed: 8798761]

[12]. Haffner C, Takei K, Chen H. Synaptosomal 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. *FEBS Lett* 1997, 419(2–3): 175–80. 10.1016/S0014-5793(97)01451-8 [PubMed: 9428629]

[13]. David C, McPherson PS, Mundigl O, de Camilli P. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. *Proc Natl Acad Sci USA* 1996, 93(1): 331–5. 10.1073/pnas.93.1.331 [PubMed: 8552632]

[14]. Ringstad N, Nemoto Y, De Camilli P. The SH3p4/Sh3p8/Sh3p13 protein family: Binding partners for synaptosomal and dynamin a Grb2-like Src homology 3 domain. *Proc Natl Acad Sci USA* 1997, 94(16): 8569–74. 10.1073/pnas.94.16.8569 [PubMed: 9238017]

[15]. de Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin WS, McPherson PS. Identification of the major synaptosomal-binding proteins in brain. *J Biol Chem* 1997, 272(13): 8710–6. 10.1074/jbc.272.13.8710 [PubMed: 9079704]

[16]. Qualmann B, Roos J, DiGregorio PJ, Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. *Mol Biol Cell* 1999, 10(2): 501–13. 10.1091/mbc.10.2.501 [PubMed: 9950691]

[17]. Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D. Two synaptosomal 1 isoforms are recruited to clathrin-coated pits at different stages. *Proc Natl Acad Sci USA* 2006, 103(51): 19332–7. 10.1073/pnas.0609795104 [PubMed: 17158794]

[18]. Pao PC, Tsai LH. Three decades of Cdk5. *J Biomed Sci* 2021, 28(1): 79. 10.1186/s12929-021-00774-y [PubMed: 34814918]

[19]. Liu SL, Wang C, Jiang T, Tan L, Xing A, Yu JT. The role of Cdk5 in Alzheimer's disease. *Mol Neurobiol* 2016, 53(7): 4328–42. 10.1007/s12035-015-9369-x [PubMed: 26227906]

[20]. Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P. Regulation of synaptosomal 1 by cyclin-dependent kinase 5 at synapses. *Proc Natl Acad Sci USA* 2004, 101(2): 546–51. 10.1073/pnas.0307813100 [PubMed: 14704270]

[21]. Sakisaka T, Itoh T, Miura K, Takenawa T. Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. *Mol Cell Biol* 1997, 17(7): 3841–9. 10.1128/MCB.17.7.3841 [PubMed: 9199318]

[22]. Cremona O, Di Paolo G, Wenk MR. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. *Cell* 1999, 99(2): 179–88. 10.1016/S0092-8674(00)81649-9 [PubMed: 10535736]

[23]. Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM. Mutations in synaptosomal disrupt synaptic vesicle recycling. *J Cell Biol* 2000, 150(3): 589–600. 10.1083/jcb.150.3.589 [PubMed: 10931870]

[24]. Singer-Krüger B, Nemoto Y, Daniell L, Ferro-Novick S, De Camilli P. Synaptosomal family members are implicated in endocytic membrane traffic in yeast. *J Cell Sci* 1998, 111(22): 3347–56. 10.1242/jcs.111.22.3347 [PubMed: 9788876]

[25]. Stefan CJ, Audhya A, Emr SD. The yeast synaptosomal-like proteins control the cellular distribution of phosphatidylinositol (4,5)-bisphosphate. *Mol Biol Cell* 2002, 13(2): 542–57. 10.1091/mbc.01-10-0476 [PubMed: 11854411]

[26]. Milosevic I, Giovedi S, Lou X. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. *Neuron* 2011, 72(4): 587–601. 10.1016/j.neuron.2011.08.029 [PubMed: 22099461]

[27]. Verstreken P, Koh TW, Schulze KL. Synaptosomal is recruited by endophilin to promote synaptic vesicle uncoating. *Neuron* 2003, 40(4): 733–48. 10.1016/S0896-6273(03)00644-5 [PubMed: 14622578]

[28]. Micheva KD, Kay BK, McPherson PS. Synaptosomalin forms two separate complexes in the nerve terminal. Interactions with endophilin and amphiphysin. *J Biol Chem* 1997, 272(43): 27239–45. 10.1074/jbc.272.43.27239 [PubMed: 9341169]

[29]. Kim WT, Chang S, Daniell L, Cremona O, Di Paolo G, De Camilli P. Delayed reentry of recycling vesicles into the fusion-competent synaptic vesicle pool in synaptosomalin 1 knockout mice. *Proc Natl Acad Sci USA* 2002, 99(26): 17143–8. 10.1073/pnas.222657399 [PubMed: 12481038]

[30]. Mani M, Lee SY, Lucast L. The dual phosphatase activity of synaptosomalin 1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. *Neuron* 2007, 56(6): 1004–18. 10.1016/j.neuron.2007.10.032 [PubMed: 18093523]

[31]. Guo S, Stoltz LE, Lemrow SM, York JD. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptosomalin encode polyphosphoinositide phosphatases. *J Biol Chem* 1999, 274(19): 12990–5. 10.1074/jbc.274.19.12990 [PubMed: 10224048]

[32]. Cao M, Wu Y, Ashrafi G. Parkinson sac domain mutation in synaptosomalin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. *Neuron* 2017, 93(4): 882–896.e5. 10.1016/j.neuron.2017.01.019 [PubMed: 28231468]

[33]. Watanabe S, Mamer LE, Raychaudhuri S. Synaptosomalin and endophilin mediate neck formation during ultrafast endocytosis. *Neuron* 2018, 98(6): 1184–1197.e6. 10.1016/j.neuron.2018.06.005 [PubMed: 29953872]

[34]. Gong LW, De Camilli P. Regulation of postsynaptic AMPA responses by synaptosomalin 1. *Proc Natl Acad Sci USA* 2008, 105(45): 17561–6. 10.1073/pnas.0809221105 [PubMed: 18987319]

[35]. Di Paolo G, De Camilli P. Phosphoinositides in cell regulation and membrane dynamics. *Nature* 2006, 443(7112): 651–7. 10.1038/nature05185 [PubMed: 17035995]

[36]. Vanhauwaert R, Kuenen S, Masius R. The SAC 1 domain in synaptosomalin is required for autophagosome maturation at presynaptic terminals. *EMBO J* 2017, 36(10): 1392–411. 10.15252/embj.201695773 [PubMed: 28331029]

[37]. Yang S, Park D, Manning L. Presynaptic autophagy is coupled to the synaptic vesicle cycle ATG-9. *Neuron* 2022, 110(5): 824–840.e10. 10.1016/j.neuron.2021.12.031 [PubMed: 35065714]

[38]. Pan PY, Sheehan P, Wang Q. *SYNJ1* haploinsufficiency causes dopamine neuron vulnerability and alpha-synuclein accumulation in mice. *Hum Mol Genet* 2020, 29(14): 2300–12. 10.1093/hmg/ddaa080 [PubMed: 32356558]

[39]. Pan PY, Zhu J, Rizvi A, Zhu X, Tanaka H, Dreyfus CF. Synaptosomalin 1 deficiency upregulates basal autophagosome formation in astrocytes. *J Biol Chem* 2021, 297(1): 100873. 10.1016/j.jbc.2021.100873 [PubMed: 34126070]

[40]. George AA, Hayden S, Holzhausen LC, Ma EY, Suzuki SC, Brockerhoff SE. Synaptosomalin 1 is required for endolysosomal trafficking of synaptic proteins in cone photoreceptor inner segments. *PLoS One* 2014, 9(1): e84394. 10.1371/journal.pone.0084394 [PubMed: 24392132]

[41]. George AA, Hayden S, Stanton GR, Brockerhoff SE. Arf6 and the 5' phosphatase of synaptosomalin 1 regulate autophagy in cone photoreceptors. *BioEssays* 2016, 38(Suppl. 1): S119–35. 10.1002/bies.201670913 [PubMed: 27417116]

[42]. Bellenguez C, Küçükali F, Jansen IE. New insights into the genetic etiology of Alzheimer's disease and related dementias. *Nat Genet* 2022, 54(4): 412–36. 10.1038/s41588-022-01024-z [PubMed: 35379992]

[43]. Kunkle BW, Grenier-Boley B, Sims R. Genetic meta-analysis of diagnosed Alzheimer's disease identifies new risk loci and implicates A β , tau, immunity and lipid processing. *Nat Genet* 2019, 51(3): 414–30. 10.1038/s41588-019-0358-2 [PubMed: 30820047]

[44]. Jansen IE, Savage JE, Watanabe K. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. *Nat Genet* 2019, 51(3): 404–13. 10.1038/s41588-018-0311-9 [PubMed: 30617256]

[45]. Jansen IE, Savage JE, Watanabe K. Author Correction: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. *Nat Genet* 2020, 52(3): 354. 10.1038/s41588-019-0573-x

[46]. Lee JH. Importance of complex traits. In: Encyclopedia of Genetics, Genomics, Proteomics and Bioinformatics; Jorde LB, Little PFR., Dunn MJ and Subramaniam S, Ed.; John Wiley and Sons: NY, USA. 2006. 10.1002/047001153X.g105102

[47]. Lander ES, Schork NJ. Genetic dissection of complex traits. *Science* 1994, 265(5181): 2037–48. 10.1126/science.8091226 [PubMed: 8091226]

[48]. Gieger C, Geistlinger L, Altmaier E. Genetics meets metabolomics: A genome-wide association study of metabolite profiles in human serum. *PLoS Genet* 2008, 4(11): e1000282. 10.1371/journal.pgen.1000282 [PubMed: 19043545]

[49]. Handen BL, Lott IT, Christian BT. The Alzheimer's biomarker consortium-down syndrome: Rationale and methodology. *Alzheimers Dement (Amst)* 2020, 12(1): e12065. 10.1002/dad2.12065 [PubMed: 32775597]

[50]. Jack CR Jr, Bennett DA, Blennow K. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. *Neurology* 2016, 87(5): 539–47. 10.1212/WNL.0000000000002923 [PubMed: 27371494]

[51]. Miranda AM, Herman M, Cheng R. Excess synaptosomal 1 contributes to place cell dysfunction and memory deficits in the aging hippocampus in three types of Alzheimer's disease. *Cell Rep* 2018, 23(10): 2967–75. 10.1016/j.celrep.2018.05.011 [PubMed: 29874583]

[52]. Aguet F, Anand S, Ardlie KG. The GTEx Consortium atlas of genetic regulatory effects across human tissues. *Science* 2020, 369(6509): 1318–30. 10.1126/science.aaz1776 [PubMed: 32913098]

[53]. Sieberts SK, Perumal TM, Carrasquillo MM. Large eQTL meta-analysis reveals differing patterns between cerebral cortical and cerebellar brain regions. *Sci Data* 2020, 7(1): 340. 10.1038/s41597-020-00642-8 [PubMed: 33046718]

[54]. Allen M, Carrasquillo MM, Funk C. Human whole genome genotype and transcriptome data for Alzheimer's and other neurodegenerative diseases. *Sci Data* 2016, 3(1): 160089. 10.1038/sdata.2016.89 [PubMed: 27727239]

[55]. De Jager PL, Ma Y, McCabe C. A multi-omic atlas of the human frontal cortex for aging and Alzheimer's disease research. *Sci Data* 2018, 5(1): 180142. 10.1038/sdata.2018.142 [PubMed: 30084846]

[56]. Wang M, Beckmann ND, Roussos P. The Mount Sinai cohort of large-scale genomic, transcriptomic and proteomic data in Alzheimer's disease. *Sci Data* 2018, 5(1): 180185. 10.1038/sdata.2018.185 [PubMed: 30204156]

[57]. Higginbotham L, Ping L, Dammer EB. Integrated proteomics reveals brain-based cerebrospinal fluid biomarkers in asymptomatic and symptomatic Alzheimer's disease. *Sci Adv* 2020, 6(43): eaaz9360. 10.1126/sciadv.aaz9360 [PubMed: 33087358]

[58]. AD Knowledge Portal. Agora. Version. 3.1.0 (2019). Available from: <https://agora.adknowledgeportal.org/>

[59]. Ando K, Ndjam M, Turbant S. The lipid phosphatase Synaptosomal 1 undergoes a significant alteration in expression and solubility and is associated with brain lesions in Alzheimer's disease. *Acta Neuropathol Commun* 2020, 8(1): 79. 10.1186/s40478-020-00954-1 [PubMed: 32493451]

[60]. Hirano A. Hirano bodies and related neuronal inclusions. *Neuropathol Appl Neurobiol* 1994, 20(1): 3–11. 10.1111/j.1365-2990.1994.tb00951.x [PubMed: 8208338]

[61]. Martin SB, Dowling ALS, Lianekhammy J. Synaptophysin and synaptosomal-1 in Down syndrome are differentially affected by Alzheimer's disease. *J Alzheimers Dis* 2014, 42(3): 767–75. 10.3233/JAD-140795 [PubMed: 24927707]

[62]. Strittmatter WJ, Weisgraber KH, Huang DY. Binding of human apolipoprotein E to synthetic amyloid beta peptide: isoform-specific effects and implications for late-onset Alzheimer disease. *Proc Natl Acad Sci USA* 1993, 90(17): 8098–102. 10.1073/pnas.90.17.8098 [PubMed: 8367470]

[63]. Zhu L, Zhong M, Elder GA. Phospholipid dysregulation contributes to ApoE4-associated cognitive deficits in Alzheimer's disease pathogenesis. *Proc Natl Acad Sci USA* 2015, 112(38): 11965–70. 10.1073/pnas.1510011112 [PubMed: 26372964]

[64]. Sharma A, Chunduri A, Gopu A, Shatrowsky C, Crusio WE, Delprato A. Common genetic signatures of Alzheimer's disease in Down syndrome. *F1000 Res* 2020, 9: 1299. 10.12688/f1000research.27096.1

[65]. Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S. Excessive expression of synaptojanin in brains with Down syndrome. *Brain Dev* 2002, 24(2): 67–72. 10.1016/S0387-7604(01)00405-3 [PubMed: 11891094]

[66]. Cheon MS, Shim KS, Kim SH, Hara A, Lubec G. Protein levels of genes encoded on chromosome 21 in fetal Down syndrome brain: Challenging the gene dosage effect hypothesis (Part IV). *Amino Acids* 2003, 25(1): 41–7. 10.1007/s00726-003-0009-9 [PubMed: 12836057]

[67]. Palmer CR, Liu CS, Romanow WJ, Lee MH, Chun J. Altered cell and RNA isoform diversity in aging Down syndrome brains. *Proc Natl Acad Sci USA* 2021, 118(47): e2114326118. 10.1073/pnas.2114326118 [PubMed: 34795060]

[68]. Cao J, Huang M, Guo L. MicroRNA-195 rescues ApoE4-induced cognitive deficits and lysosomal defects in Alzheimer's disease pathogenesis. *Mol Psychiatry* 2021, 26(9): 4687–701. 10.1038/s41380-020-0824-3 [PubMed: 32632205]

[69]. Voronov SV, Frere SG, Giovedi S. Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down's syndrome. *Proc Natl Acad Sci USA* 2008, 105(27): 9415–20. 10.1073/pnas.0803756105 [PubMed: 18591654]

[70]. Cossec JC, Lavaur J, Berman DE. Trisomy for synaptojanin 1 in Down syndrome is functionally linked to the enlargement of early endosomes. *Hum Mol Genet* 2012, 21(14): 3156–72. 10.1093/hmg/dds142 [PubMed: 22511594]

[71]. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA. Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and Down syndrome: differential effects of APOE genotype and presenilin mutations. *Am J Pathol* 2000, 157(1): 277–86. 10.1016/S0002-9440(10)64538-5 [PubMed: 10880397]

[72]. Wu CI, Vinton EA, Pearse RV II. APP and DYRK1A regulate axonal and synaptic vesicle protein networks and mediate Alzheimer's pathology in trisomy 21 neurons. *Mol Psychiatry* 2022, 27(4): 1970–89. 10.1038/s41380-022-01454-5 [PubMed: 35194165]

[73]. Landman N, Jeong SY, Shin SY. Presenilin mutations linked to familial Alzheimer's disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. *Proc Natl Acad Sci USA* 2006, 103(51): 19524–9. 10.1073/pnas.0604954103 [PubMed: 17158800]

[74]. McIntire LBJ, Berman DE, Myaeng J. Reduction of synaptojanin 1 ameliorates synaptic and behavioral impairments in a mouse model of Alzheimer's disease. *J Neurosci* 2012, 32(44): 15271–6. 10.1523/JNEUROSCI.2034-12.2012 [PubMed: 23115165]

[75]. Zhu L, Zhong M, Zhao J. Reduction of synaptojanin 1 accelerates A β clearance and attenuates cognitive deterioration in an Alzheimer mouse model. *J Biol Chem* 2013, 288(44): 32050–63. 10.1074/jbc.M113.504365 [PubMed: 24052255]

[76]. Berman DE, Dall'Armi C, Voronov SV. Oligomeric amyloid- β peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. *Nat Neurosci* 2008, 11(5): 547–54. 10.1038/nn.2100 [PubMed: 18391946]

[77]. Botté A, Potier MC. Focusing on cellular biomarkers: The endolysosomal pathway in Down syndrome. *Prog Brain Res* 2020, 251: 209–43. 10.1016/bs.pbr.2019.10.002 [PubMed: 32057308]

[78]. Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer's disease. *Free Radic Biol Med* 2018, 114: 40–51. 10.1016/j.freeradbiomed.2017.10.001 [PubMed: 28988799]

[79]. Ando K, Erneux C, Homa M. Dysregulation of phosphoinositide 5-phosphatases and phosphoinositides in Alzheimer's disease. *Front Neurosci* 2021, 15: 614855. 10.3389/fnins.2021.614855 [PubMed: 33716646]

[80]. Jenkins K, Mateeva T, Szabó I. Combining data integration and molecular dynamics for target identification in α -Synuclein-aggregating neurodegenerative diseases: Structural insights on Synaptojanin-1 (SYNJ1). *Comput Struct Biotechnol J* 2020, 18: 1032–42. 10.1016/j.csbj.2020.04.010 [PubMed: 32419904]

[81]. Saito T, Guan F, Papilos DF. Mutation analysis of *SYNJ1*: A possible candidate gene for chromosome 21q22-linked bipolar disorder. *Mol Psychiatry* 2001, 6(4): 387–95. 10.1038/sj.mp.4000871 [PubMed: 11443522]

[82]. Dyment DA, Smith AC, Humphreys P, Schwartzentruber J, Beaulieu CL, Consortium FC. Homozygous nonsense mutation in *SYNJ1* associated with intractable epilepsy and tau

pathology. *Neurobiol Aging* 2015, 36(2): e1–5. 10.1016/j.neurobiolaging.2014.09.005 [PubMed: 25085785]

[83]. Quadri M, Fang M, Picillo M. Mutation in the *SYNJ1* gene associated with autosomal recessive, early-onset Parkinsonism. *Hum Mutat* 2013, 34(9): 1208–15. 10.1002/humu.22373 [PubMed: 23804577]

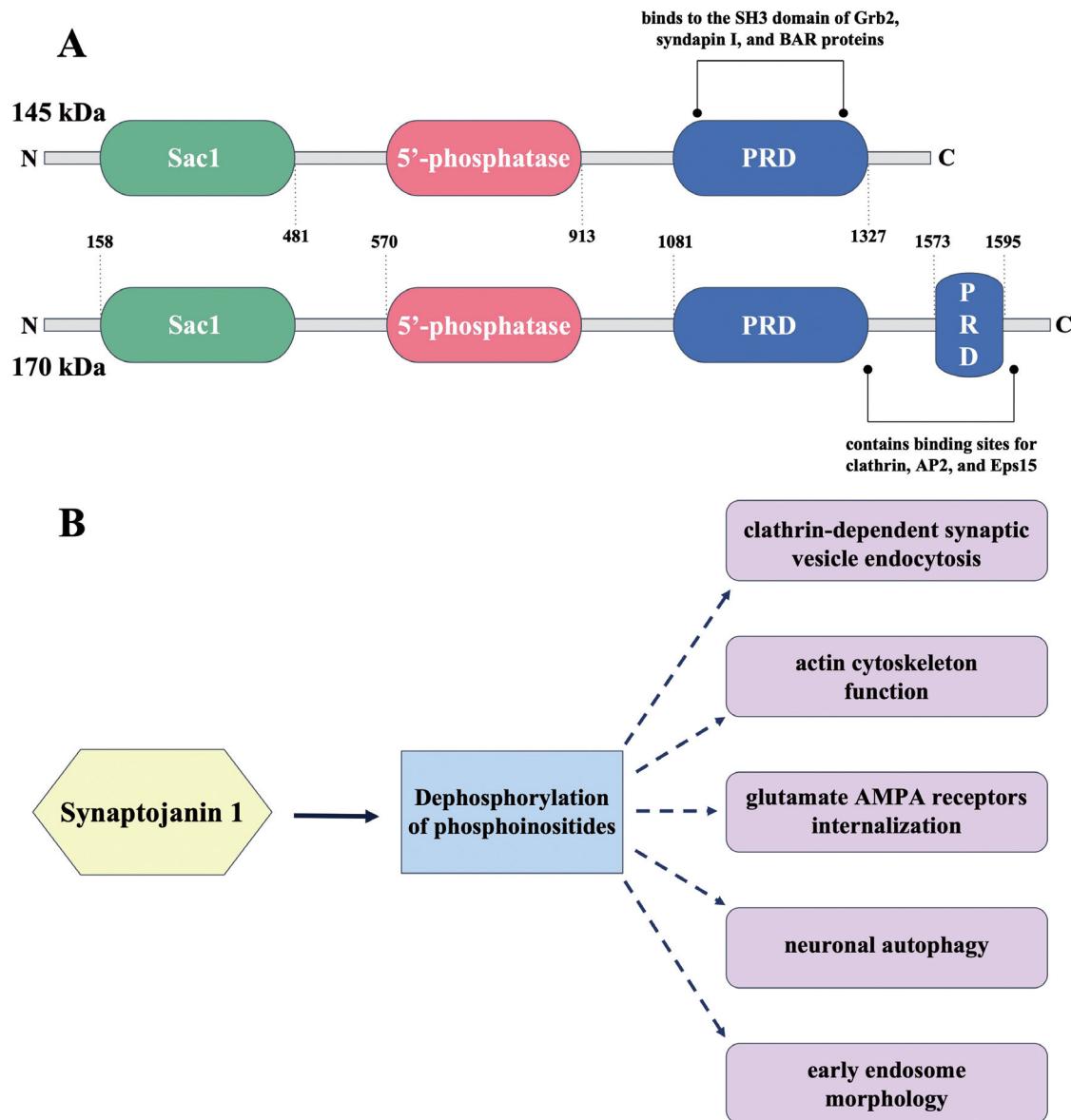
[84]. Krebs CE, Karkheiran S, Powell JC. The Sac1 domain of *SYNJ1* identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. *Hum Mutat* 2013, 34(9): 1200–7. 10.1002/humu.22372 [PubMed: 23804563]

[85]. Chen KH, Wu RM, Lin HI, Tai CH, Lin CH. Mutational analysis of *SYNJ1* gene (PARK20) in Parkinson’s disease in a Taiwanese population. *Neurobiol Aging* 2015, 36(10): 2905.e7–8. 10.1016/j.neurobiolaging.2015.06.009

[86]. Kirola L, Behari M, Shishir C, Thelma BK. Identification of a novel homozygous mutation Arg459Pro in *SYNJ1* gene of an Indian family with autosomal recessive juvenile Parkinsonism. *Parkinsonism Relat Disord* 2016, 31: 124–8. 10.1016/j.parkreldis.2016.07.014 [PubMed: 27496670]

[87]. Ben Romdhan S, Sakka S, Farhat N, Triki S, Dammak M, Mhiri C. A novel *SYNJ1* mutation in a tunisian family with juvenile Parkinson’s disease associated with epilepsy. *J Mol Neurosci* 2018, 66(2): 273–8. 10.1007/s12031-018-1167-2 [PubMed: 30187305]

[88]. Choudhry H, Aggarwal M, Pan PY. Mini-review: Synaptotjanin 1 and its implications in membrane trafficking. *Neurosci Lett* 2021, 765: 136288. 10.1016/j.neulet.2021.136288 [PubMed: 34637856]


[89]. Yamabhai M, Hoffman NG, Hardison NL. Intersectin, a novel adaptor protein with two Eps15 homology and five Src homology 3 domains. *J Biol Chem* 1998, 273(47): 31401–7. 10.1074/jbc.273.47.31401 [PubMed: 9813051]

[90]. Chang KT, Min KT. Upregulation of three *Drosophila* homologs of human chromosome 21 genes alters synaptic function: Implications for Down syndrome. *Proc Natl Acad Sci USA* 2009, 106(40): 17117–22. 10.1073/pnas.0904397106 [PubMed: 19805187]

[91]. Adayev T, Chen-Hwang MC, Murakami N, Wang R, Hwang YW. MNB/DYRK1A phosphorylation regulates the interactions of synaptotjanin 1 with endocytic accessory proteins. *Biochem Biophys Res Commun* 2006, 351(4): 1060–5. 10.1016/j.bbrc.2006.10.169 [PubMed: 17097615]

[92]. Chen CK, Bregere C, Paluch J, Lu JF, Dickman DK, Chang KT. Activity-dependent facilitation of Synaptotjanin and synaptic vesicle recycling by the Minibrain kinase. *Nat Commun* 2014, 5(1): 4246. 10.1038/ncomms5246 [PubMed: 24977345]

[93]. Peng YJ, Geng J, Wu Y. Minibrain kinase and calcineurin coordinate activity-dependent bulk endocytosis through synaptotjanin. *J Cell Biol* 2021, 220(12): e202011028. 10.1083/jcb.202011028 [PubMed: 34596663]

Fig. (1).

Structure and function of Synaptojanin 1 (*SYNJ1*). **A.** Schematic representation of the structure of the two isoforms of *SYNJ1*, including functional domains and known interactors. **B.** Representation of the multiple functions of *SYNJ1*, through its effect on the dephosphorylation of phosphoinositides. PRD, proline-rich domain, BAR, Bin/Amphiphysin/RVS.

Table 1.
SYN11 in human Alzheimer's disease: genetic association, neuropathology and expression in human brains.

Populations	Genetic Association of <i>SYN11</i>		Human Brains	
	-	Neuropathology	<i>SYN11</i> RNA	<i>SYN11</i> Protein
Late Onset AD (LOAD)	Not detected [46]	Accumulation in plaque-associated dystrophic neurites, in Hirano bodies and in some neurofibrillary tangles [60] Co-precipitation with (PHF)-tau [60]	Transcriptomics: decreased in LOAD (AD Knowledge Portal) [55–57] Increased in LOAD, correlate with levels of phosphorylated tau [60]	Proteomics: increased [58] or decreased (AD Knowledge Portal) [59] in LLOAD Increased in detergent-insoluble fraction in LOAD, correlate with levels of phosphorylated tau [60] Decreased in total homogenate and detergent-soluble fraction in LOAD [60, 62]. Within the LOAD cohort, <i>APOE4</i> carriers have higher <i>SYN11</i> levels than non-carriers [60] Increased in <i>APOE4</i> carriers in a control cohort [64]
High Risk Down Syndrome (DS)	Unexplored		Inverse correlation with synaptophysin levels among older individuals with DS-AD [52]	Increased in DS vs. disomic controls [68] Increased in DS vs. disomic controls [60, 62, 66, 67]
High Risk Autosomal Dominant AD (ADAD)	Yes, early- and late-onset [52]	Co-precipitation with (PHF)-tau [60]	Similar to LOAD (small sample size) [60]	Similar to LOAD (small sample size) [60] Similar to LOAD (small sample size) [60]

Abbreviations: PHF, paired helical filaments, CDR, clinical dementia rating, miR, microRNA, MCI, mild cognitive impairment.

Icons were generated with biorender.com.

SYN1 in cellular and murine models of Alzheimer's disease.**Table 2.**

Populations	Cellular and Murine Models		
	Model and Treatment	Phenotype	Proposed Mechanism
Human <i>APOE4/4</i> knock-in (KI) mouse models	<i>SYN1</i> levels unchanged, compared to <i>ApoE</i> null (knock-out) mice [64] <i>SYN1</i> mRNA levels and <i>SYN1</i> protein levels increased, compared to <i>APOE3/3</i> KI mouse models [64] miR-195 levels reduced, compared to <i>APOE3/3</i> KI mice [69]	Genetically decreasing <i>SYN1</i> levels in <i>ApoE4</i> KI mice rescues the cognitive deficits exhibited by these mice [64]	
Primary cultures of hippocampal <i>ApoE</i> null neurons	Incubation with conditioned media derived from <i>APOE3/3</i> astrocytes, but not <i>ApoE4/4</i> or <i>ApoE</i> null astrocytes, leads to a reduction of <i>SYN1</i> levels [64]	Accelerated degradation of <i>SYN1</i> mRNA [64]	
Human <i>ApoE4/4</i> knock-in (KI) mouse models with or without a transgenic AD background, viral delivery of miR-195 in the hippocampus	Incubation with conditioned media derived from <i>ApoE4/4</i> astrocytes leads to lower miR-195 levels, compared to <i>APOE3/3</i> astrocytes [69]	Upregulation of miR-195 can modulate <i>SYN1</i> expression, supported by the fact that overexpressing miR-195 reduces <i>SYN1</i> protein levels in <i>ApoE</i> null, <i>APOE3/3</i> and <i>ApoE4/4</i> neurons [69]	
Late Onset AD (LOAD)	Rescue of cognitive deficits and reduction of tau hyperphosphorylation [69]. Reduction in A β 42 oligomers and amyloid plaque burden in the transgenic AD background [69]	Rescue of cognitive deficits and reduction of tau hyperphosphorylation [69]. Reduction in A β 42 oligomers and amyloid plaque burden in the transgenic AD background [69]	
	Enlargement of lysosomes in human <i>ApoE4/4</i> neurons [69]	Over-expression of miR-195 reduces lysosomal enlargement and reduces phosphorylated tau levels in human <i>ApoE4/4</i> neurons [69]	
	Reduction of lysosomal size in <i>SYN1</i> $^{+/-}$ neurons compared to <i>SYN1</i> $^{+/+}$ neurons [69]	miR-195 acts through the control of <i>SYN1</i> levels on lysosomal homeostasis, supported by no additional effect of over-expression of miR-195 on lysosomal size in <i>SYN1</i> $^{+/-}$ neurons [69]	
Tg(<i>SYN1</i>) [70], compared to WT littermates	Increased levels of <i>SYN1</i> [52,70] Early endosomes enlargement [71]	Increased levels of <i>SYN1</i> [52,70] Early endosomes enlargement [71]	
	3-4-month-old: no deficit in the Morris water maze, deficit in the reverse platform test [70]	3-4-month-old: no deficit in the Morris water maze, deficit in the reverse platform test [70]	No differences in basal neurotransmission and synaptic plasticity [70]
	9-month-old: no deficit in the radial arm water maze (RAWM) and fear conditioning (FC) paradigms [52]	9-month-old: no deficit in the radial arm water maze (RAWM) and fear conditioning (FC) paradigms [52]	
	19-month-old: deficit in the RAWM and decreased freezing in contextual FC [52]	19-month-old: deficit in the RAWM and decreased freezing in contextual FC [52]	Unchanged levels of pre- and post-synaptic proteins, but acute hyperexcitability and deficit in the spatial reproducibility of hippocampal place fields [52]

Populations	Cellular and Murine Models		
	Model and Treatment	Phenotype	Proposed Mechanism
High risk Down Syndrome (Ds)	Ts65Dn mouse model	Increased levels of <i>SYN1</i> , PtdIns(4,5)P ₂ reduction [70]	Restoring <i>SYN1</i> copy number rescues PtdIns(4,5)P ₂ levels [70]
	Lymphoblastoid cell lines derived from individuals with DS	Increased levels of <i>SYN1</i> , enlarged early endosomes [71]	The Hsa21 segment containing <i>SYN1</i> is sufficient to induce early endosomal enlargement [71]
	Fibroblasts derived from individuals with DS	Increased levels of <i>SYN1</i> , enlarged early endosomes [71]	Decreasing <i>SYN1</i> levels reduces the percentage of larger endosomes [71]
	Overexpression of <i>SYN1</i> in SH-SY5Y neuroblastoma cell lines	Enlarged early endosomes [71]	
	Human iPSCs-derived neurons from individuals with DS and their euploid isogenic controls [73]	Increased levels of <i>SYN1</i> , higher secreted A β peptides, higher phosphorylated tau, impaired lysosomal transport, increased synaptic vesicle release [73]	Restoring <i>SYN1</i> copy number to disomy did not rescue A β peptide secretion or tau phosphorylation, but restoring <i>APP</i> copy number did [73]
	<i>PSEN1</i> and <i>PSEN2</i> ADAD cells	PtdIns(4,5)P ₂ reduction, A β 42 increase [74]	Similarities with the overexpression of the inositol 5-phosphatase domain of <i>SYN1</i> [74]
High risk Autosomal Dominant AD (ADAD)	Genetic decrease of <i>SYN1</i> in ADAD mouse models	Improvement of learning and memory deficits [75, 76]	Protection against the effect of A β oligomers on PtdIns(4,5)P ₂ decrease, long-term potentiation (LTP) impairment and synaptic toxicity [75, 77] Increased A β uptake and degradation [76]

Abbreviations: miR, microRNA, iPSCs, induced pluripotent stem cells, WT, wild-type.
Icons were generated by biorender.com.