

Joint spatial associations of amyloid beta and tau pathology in Down syndrome and preclinical Alzheimer's disease: Cross-sectional associations with early cognitive impairments

Jessie Fanglu Fu¹ | Arun Garimella¹ | Alex Lapointe¹ | William W. T. Aye¹ | Charles D. Chen¹ | Joseph H. Lee² | Sharon J. Krinsky-McHale³ | Shahid Zaman⁴ | Ira T. Lott⁵ | Christy Hom⁶ | Beau Ances⁷ | Elizabeth Head⁸ | Mark Mapstone⁹ | Florence Lai¹⁰ | Benjamin L. Handen¹¹ | Charles M. Laymon¹² | Sigan L. Hartley¹³ | Bradley T. Christian¹³ | Dorene M. Rentz¹⁰ | Keith A. Johnson¹ | H. Diana Rosas¹⁰ | Julie C. Price¹ | the Alzheimer Biomarkers Consortium-Down Syndrome (ABC-DS)

¹Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA

²Departments of Neurology and Epidemiology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York, USA

³Department of Psychology, The New York State Institute for Basic Research in Developmental Disabilities, Staten Island, New York, USA

⁴Department of Psychiatry, University of Cambridge, Cambridge, UK

⁵Department of Pediatrics, University of California, Irvine, California, USA

⁶Department of Psychiatry and Human Behavior, University of California, Irvine, California, USA

⁷Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA

⁸Department of Pathology, University of California, Irvine, California, USA

⁹Department of Neurology, University of California, Irvine, California, USA

¹⁰Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA

¹¹Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

¹²Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

¹³Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, USA

Correspondence

Jessie Fanglu Fu and Julie C. Price,
Massachusetts General Hospital, Harvard
Medical School, Charlestown, Massachusetts,
USA.
Email: fifu@mgh.harvard.edu and
jcprice@mgh.harvard.edu

Funding information

National Institute on Aging; National Institute
of Biomedical Imaging and Bioengineering

Abstract

INTRODUCTION: Individuals with Down syndrome (DS) have elevated risks for Alzheimer's disease (AD) due to amyloid beta (A β) precursor protein overexpression, with nearly all developing AD pathology by age 40 at autopsy. This study examined spatial associations between A β and tau burden in DS and neurotypical aging.

METHODS: Data included 145 DS (25–67 years) and 191 neurotypical aging individuals (63–89 years). Regional A β and tau positron emission tomography outcomes were analyzed using multiset canonical correlation analysis to identify joint A β /tau spatial patterns, with regression models assessing associations with age and cognition.

RESULTS: For a given A β burden, cognitively stable DS individuals exhibited relatively higher tau burden than neurotypical aging, while DS mild cognitive impairment/AD individuals exhibited more widespread pathology. Joint A β /tau patterns were associated with episodic memory impairment in DS and, as the disease progresses, executive dysfunction.

DISCUSSION: DS exhibits overlapping and distinct AD-related neuropathology features, emphasizing the importance of biomarkers for early detection and intervention.

KEY WORDS

Alzheimer's disease, amyloid, Down syndrome, memory, multivariate analysis, preclinical, tau

Highlights

- There are distinct amyloid beta (A β) and tau spatial patterns in Down syndrome (DS): For a given level of A β burden, individuals with DS exhibited greater and more widespread tau burden compared to neurotypical aging, even before a clinical diagnosis of dementia.
- A β -associated tau burden was linked to episodic memory impairment in DS prior to dementia, with executive dysfunction emerging as the disease progressed, highlighting the sequential impact of pathology on cognition.
- The unique pattern of early striatal A β accumulation in DS supports its use as a potential biomarker for tracking disease progression and guiding clinical trial inclusion criteria for Alzheimer's disease interventions in DS.

1 | BACKGROUND

Most individuals with Down syndrome (DS) are at an elevated risk for Alzheimer's disease (AD), due to an extra copy of chromosome 21 (trisomy 21), which contains the amyloid beta (A β) precursor protein (APP) gene. At autopsy, nearly all individuals with DS exhibit hallmark AD neuropathology, that is, A β plaques and tau neurofibrillary tangles (NFTs), by age 40,^{1–3} with the median age of dementia being 53.8 years.⁴ Prior studies using positron emission tomography (PET) imaging, including those from the Alzheimer Biomarkers Consortium–Down Syndrome (ABC-DS), have provided key insights into aging-related, DS-specific, and AD-related changes in glucose metabolism and A β and tau burden.³ Findings include a striatum-first pattern of A β burden unique to DS and autosomal dominant AD, which is distinct from the cortical-first pattern observed in sporadic AD;^{5–8} cognitive resilience to A β burden in adults with DS;^{9,10} and faster striatal A β accumulation over time in DS compared to neurotypical aging and sporadic AD, even when the global rates of A β accumulation are comparable.^{5,7,11} Additionally, tau PET imaging has enabled the applications of the A β , tau, and neurodegeneration (AT[N]) framework and in vivo Braak NFT staging to the DS population.^{12–15} Tau burden occurs earlier relative to A β burden in DS compared to sporadic and autosomal dominant AD^{15–17} and is a stronger predictor of episodic memory impairment in DS before the onset of clinical dementia.^{10,18–20} These findings highlight the importance of jointly examining A β and tau burden in relation

to early cognitive impairment in DS to identify imaging biomarkers indicative of AD progression, which can inform DS-specific inclusion criteria in therapeutic trials.^{21–24}

Imaging and cognitive outcomes in DS have been compared to those observed in other well-studied cohorts, including autosomal dominant and sporadic AD,^{8,17} non-demented DS sibling controls,¹⁵ and neurotypical aging populations.^{8,25} Many prior studies used univariate regression analyses to evaluate the associations between PET uptake measures of A β and tau burden at regional or voxel levels, typically using predefined regions of interest (ROIs, e.g., cortical A β or entorhinal tau) to reduce the number of comparisons and the potential for inference errors. Multivariate analyses, such as multiset canonical correlation analysis (MCCA), offer an alternative by generating outcomes as weighted sums of PET uptake across multiple regions (i.e., spatial patterns), eliminating the need to predefine ROIs in the context of dimensionality reduction. MCCA is particularly effective in identifying associations between multimodal imaging datasets by decomposing data into highly correlated components. This approach has demonstrated greater statistical power and sensitivity to subtle disease-related deficits compared to univariate analyses.^{26,27} Similar joint pattern analysis methods have been applied to examine spatial associations between A β and tau burden in aging and mild cognitive impairment (MCI), as well as relationships among A β burden, glucose metabolism, and brain volume in DS and AD.^{28,29}

In this study, we applied MCCA to compare the joint spatial associations between A β and tau burden in individuals with DS and cognitively normal or stable (CS) older adults from the Harvard Aging Brain Study (HABS). The MCCA joint pattern analysis enabled the interrogation of cross-cohort similarities and differences in the expressions of joint A β and tau spatial patterns across multiple brain regions between DS and neurotypical aging individuals at risk of AD, providing a more nuanced view of AD-related pathology in DS relative to a large, well-characterized neurotypical aging cohort that includes individuals with preclinical AD pathology. Specifically, we investigated the joint A β and tau spatial patterns in cognitively stable DS individuals (DS-CS), DS individuals with MCI or AD (DS-MCI/AD), and HABS-CS individuals.

2 | METHODS

2.1 | Participant characteristics

2.1.1 | ABC-DS

The study included 145 individuals with DS (age: 25–67 years) from the ABC-DS consortium study, which included individuals from DS cohort studies of Alzheimer's Disease Down Syndrome (ADDS) and Neurodegeneration in Aging Down Syndrome (NiAD) cohorts. All participants were classified as DS-CS, having MCI or AD (DS-MCI/AD), or undetermined based on consensus of at least three experts using caregiver-reported and direct measures of cognitive functioning, adaptive and maladaptive behavior, neurological exam, medical and psychiatric history, and recent life events (Table 1).³ Participants underwent a comprehensive evaluation that included a cognitive assessment battery, physical/neurological exam, and caregiver questionnaires.³ The cognitive assessment battery included measures of Down Syndrome Mental Status Examination (DSMSE) and Dementia Questionnaire for People with Learning Disabilities (DLD), functional abilities (Vineland Adaptive Behavior Scale), language (Categorical/Verbal Fluency), visuospatial construction (Block Design and Extended Block Design and Beery-Buktenica Developmental Test of Visual Motor Integration [VMI]), memory (Cued Recall Task, and Rivermead Behavioral Memory Test for Children—Face & Picture Recognition), and executive function and processing speed (Stroop Dog and Cat and The Purdue Pegboard). Premorbid intellectual disability, defined as the intellectual disability level prior to a clinical status of MCI or AD, was also determined as mild, moderate, and severe.³⁰ The Tinetti Assessment Tool: Gait test was used to assess gait abnormalities.³¹ The study protocols were approved by the local institutional review board at each participating site, and informed consent was obtained from all participants or their proxy/legally authorized representatives.

2.1.2 | HABS

The study included 191 older cognitively normal or stable adults (HABS-CS, age: 63–89 years, Table 2) from the publicly available HABS

RESEARCH IN CONTEXT

1. **Systematic review:** Literature was reviewed using online databases (e.g., PubMed). While individuals with Down syndrome (DS) develop Alzheimer's disease (AD) pathology by their 40s, the joint associations between amyloid beta (A β) and tau burden across multiple brain regions in DS compared to neurotypical aging remains underexplored. Understanding how these pathologies interact and their associations with cognitive impairment in DS is crucial for identifying early biomarkers of disease progression and improving participant selection for clinical trials.
2. **Interpretation:** Leveraging multimodal imaging data from two large multicohort studies of DS and neurotypical aging and a multivariate analysis approach, our findings suggest that, for a given level of A β burden, individuals with DS exhibit a more widespread tau burden compared to neurotypical aging, even before a clinical diagnosis of dementia. Additionally, A β -associated tau burden was linked to episodic memory impairment in DS and, as disease progressed, to executive dysfunction. The unique striatal A β accumulation in DS, which was not observed in neurotypical aging, further highlights distinct neuropathological trajectories in DS-related AD.
3. **Future directions:** Future research should incorporate longitudinal data to evaluate the within-person changes in these A β and tau spatial patterns and their impact on cognitive decline in DS and neurotypical aging.

dataset (Public Release Version 2: <https://habs.mgh.harvard.edu>). All participants had a Clinical Dementia Rating (CDR) score of 0 at baseline, indicating no clinical signs of dementia.³² Participants underwent standard neuropsychological assessments, including the Preclinical Alzheimer Cognitive Composite version 5 (PACC-5), Logical Memory Delayed Recall (LMDR), Free and Cued Selective Reminding Test (FCSRT), Mini-Mental State Examination (MMSE), Digit Symbol Substitution Test (DSST), and Category Fluency (CAT).³³ Clinical follow-ups were performed to assess individuals who have or have not converted to cognitive impairment (mean = 2.0 years, range: 0–5.6 years). Informed consent was obtained, and the study was approved by the Mass General Brigham Human Research Committee.

2.2 | Imaging protocols and processing

2.2.1 | ABC-DS

In this multi-site study, DS participants underwent A β PET imaging using [¹¹C]Pittsburgh compound B (PiB, n = 134) or [¹⁸F]Florbetapir

TABLE 1 Participant characteristics in the ABC-DS cohort.

	DS-CS	DS-MCI	DS-AD	Undetermined
N	116	12	7	10
Age (years)	37.96 (8.13)	50.25 (5.31)	52 (3.83)	46.6 (8.98)
Sex	59 M, 57 F	2 M, 10 F	3 M, 4 F	6 M, 4 F
APOE ε4 status	88 APOE ε4 negative 28 APOE ε4 positive	9 APOE ε4 negative 3 APOE ε4 positive	5 APOE ε4 negative 2 APOE ε4 positive	9 APOE ε4 negative 1 APOE ε4 positive
Mental status				
Premorbid intelligence disability level	61 mild, 34 moderate, 15 severe, 6 unavailable	5 mild, 3 moderate, 0 severe, 4 unavailable	4 mild, 3 moderate, 0 severe	4 mild, 4 moderate, 1 severe, 1 unavailable
DSMSE	50.77 (7.78)	45.62 (6.24)	37.07 (9.35)	38.14 (11.54)
DLD cognition	2.72 (4.7)	9.08 (5.81)	16.29 (9.74)	13.6 (11.53)
DLD social	3.03 (3.42)	6.83 (4.51)	11.71 (6.65)	16.5 (7.18)
Functional abilities				
Vineland Adaptive Behavior Scale	54.26 (17.54)	43.25 (17.16)	30 (8.67)	28.9 (14.07)
Visuospatial construction				
Extended Block Design	13.84 (2.78)	13.17 (3.35)	7.71 (5.82)	9.5 (6.26)
VMI	17.02 (3.06)	15.17 (2.95)	13.43 (4.16)	15.38 (2.67)
Memory				
Cued Recall Task	33.05 (4.5)	25.36 (7.23)	18.71 (9.46)	28.17 (8.33)
Rivermead Face & Picture Recognition	16.71 (3.72)	12.08 (3.34)	11 (1.53)	12.14 (3.13)
Executive processing and speed				
Stroop Dog and Cat	34.64 (15.01)	51.49 (22.07)	51.94 (28.46)	34.08 (36.05)
The Purdue Pegboard	6.75 (2.01)	5.27 (1.42)	4.86 (1.57)	5.14 (1.77)
PET imaging measures				
Global Aβ SUVR	1.27 (0.21)	1.66 (0.28)	2.18 (0.39)	1.47 (0.27)
Tau Entorhinal SUVR	1.13 (0.2)	1.63 (0.35)	1.63 (0.36)	1.34 (0.36)
Tau Inferior Temporal SUVR	1.17 (0.17)	1.66 (0.48)	1.9 (0.6)	1.36 (0.36)

Note: All values are expressed as mean (standard deviation) when appropriate.

Abbreviations: Aβ, amyloid beta; ABC-DS, Alzheimer Biomarkers Consortium—Down Syndrome; AD, Alzheimer's disease; APOE, apolipoprotein E; CS, cognitively stable; DLD, Dementia Questionnaire for People with Learning Disabilities; DS, Down syndrome; DSMSE, Down Syndrome Mental Status Examination; F, female; M, male; MCI, mild cognitive impairment; PET, positron emission tomography; SUVR, standardized uptake value ratios.

(FBP, $n = 11$), tau PET imaging using [^{18}F]flortaucipir (FTP), and T1-weighted magnetic resonance (MR) imaging.³ Image acquisition and PET reconstruction followed the Alzheimer's Disease Neuroimaging Initiative (ADNI) protocols.^{3,34} A summary of the sequences used to generate the T1-weighted MR images, along with details of the participating ABC-DS sites (Harvard/Mass General Hospital, Wisconsin, Banner, Pittsburgh, Cambridge) in this study, is included in Table S1 in supporting information.

A detailed imaging processing pipeline and description of the quality control procedures can be found in Table S2 and Figure S1 in supporting information. PET frame-by-frame motion correction was performed and a mean PET image was generated using FSL (FMRIB Software library). T1-weighted MR images were bias-corrected using the Advanced Normalization Tools (ANTs).³⁵ Both the mean PET and MR images were skull stripped using mri_synthstrip (FreeSurfer).³⁶ PET images were then coregistered to the MR images using FSL, and the MR images were normalized to a publicly available DS-CS-specific

MR template using ANTs.³⁷ Regional segmentation was performed on the DS-CS MR template using FreeSurfer (version 6, recon-all) with manual edits. After normalization, the transformation matrices were applied to the PET images for regional sampling in the template space. Visual quality control was performed at each processing step by an experienced research assistant blinded to the analysis outcomes. Standardized uptake value (SUV, g/mL) images were generated by normalizing the PET activity by body weight and injected dose.

Regional (ROI-based) PiB and FBP uptake values were quantified as standardized uptake value ratios (SUVR, 50–70 minutes post-injection) across the neocortical regions, including the frontal, lateral temporal, parietal, and retrosplenial regions, as well as the thalamus and striatum. Regional FTP uptake values were quantified as SUVR (80–100 minutes post-injection) in tau-relevant regions, including regions involved in the early (entorhinal, parahippocampus, amygdala, and hippocampus), intermediate (fusiform, inferior temporal, anterior and posterior cingulate, and insula) and late (rostral middle frontal, inferior parietal,

TABLE 2 Participant characteristics in the HABS cohort.

	A β –	A β +
N	106	85
Age (years)	75.8 (6.45)	76.84 (6.15)
Sex	45 M, 61 F	34 M, 51 F
Education (years)	15.9 (3.28)	16.36 (2.76)
APOE ϵ 4 status	91 APOE ϵ 4 negative 15 APOE ϵ 4 positive	45 APOE ϵ 4 negative 38 APOE ϵ 4 positive 2 N/A
Global cognition		
Preclinical Alzheimer Cognitive Composite	0.23 (0.74)	0.08 (0.65)
Mini-Mental State Examination	29.27 (1.08)	29.13 (1)
Memory		
Logical Memory Delayed Recall	16.43 (3.7)	15.71 (3.45)
Free and Cued Selective Reminding Test—Cued	47.76 (0.67)	47.54 (1.06)
Free and Cued Selective Reminding Test—Free	32.98 (6.14)	32.56 (7.02)
Executive processing and speed		
Digit Symbol Substitution Test	47.82 (11.19)	46.82 (9.72)
Trail Making Test Part A	33.2 (10.83)	36.62 (17.07)
Trail Making Test Part B	84.05 (50.3)	83.03 (46.07)
PET imaging measures		
Global A β DVR	1.13 (0.04)	1.41 (0.21)
Tau entorhinal SUVR	1.08 (0.09)	1.17 (0.14)
Tau inferior temporal SUVR	1.18 (0.07)	1.23 (0.1)

Note: All values are expressed as mean (standard deviation) when appropriate. A β status was determined using a threshold of 1.19.

Abbreviations: A β , amyloid beta; AD, Alzheimer's disease; APOE, apolipoprotein E; DS, Down syndrome; DVR, distribution volume ratios; F, female; HABS, Harvard Aging Brain Study; M, male; MCI, mild cognitive impairment; N/A, unavailable; PET, positron emission tomography; SUVR, standardized uptake value ratios.

lateral occipital, lingual, pericalcarine, cuneus, precentral) stages of tau spread.³⁸ The cerebellar gray matter was used as the reference regions for both A β and tau SUVR calculations.

2.2.2 | HABS

Participants underwent A β PET imaging using PiB and tau PET imaging using FTP and T1-weighted MR imaging. All PET data were acquired, reconstructed, and processed according to prior protocols.³⁹ Briefly, motion-corrected PET images were coregistered to the MR images

using SPM (Coregistration: Estimate & Write, version 8). Regional parcellations were generated using FreeSurfer (version 6, recon-all) using the MR images with manual edits and brought into the PET space. Regional PiB uptake values were quantified as distribution volume ratios (DVR, Logan graphical method), and regional FTP uptake values were quantified as SUVR (75–105 minutes post-injection). The same cerebellar gray matter reference region was used. Binary A β status was determined using a PiB DVR cutoff of 1.19 in the cortical composite regions, as previously described.³⁹

2.3 | Statistical analyses

2.3.1 | Multivariate analyses—MCCA

Regional A β and tau PET data were normalized using z transformation relative to the DS-CS individuals in the ABC-DS cohort and relative to all HABS-CS individuals in the HABS cohort. Step-by-step details about this joint analysis approach are listed in Fu et al. and in supporting information.²⁶ Briefly, principal component analysis (PCA) was first performed on the normalized PET data to advise on the number of components or pairs of canonical variates for MCCA (components accounting for at least 5% of variance were retained). MCCA identified complementary or joint spatial patterns of A β and tau burden, maximizing the correlations across individuals. Key MCCA outcomes included: (1) spatial patterns: regional weights of A β and tau-relevant regions, representing each region's relative contribution to the joint A β and tau association; (2) subject scores or the expressions: expressions of the joint A β and tau spatial patterns for each individual, with high correlations between expressions of the A β and tau patterns.

The following equation is used to calculate the subject scores for A β and tau burden separately:

$$\text{subject scores} = \sum_1^N \text{weight}_i \times \text{regional uptake}_i$$

where i is the index for each region, N is the total number of regions, weight is the regional weights (spatial patterns), and regional uptake is the z transformed PET uptake values for each region.

Subject scores are presented as z scores, with positive z transformed values indicating individuals who strongly exhibit the spatial patterns.

Random permutation (1000 iterations) across individuals was performed separately for the A β and tau datasets to construct the empirical null distributions and estimate the significance of correlations between the subject scores. Leave-one-out cross-validation was performed to estimate the error bounds for regional weights. Analyses were performed separately in all DS individuals, DS-CS only, and HABS-CS individuals.

2.3.2 | Clinical correlation and group analyses

Group comparisons using analysis of covariance assessed clinical and demographic differences among DS-CS ($n = 116$), DS-MCI/AD ($n = 19$),

and HABS-CS ($n = 191$) groups. Additional comparisons evaluated $\text{A}\beta$ and tau pattern expressions, global $\text{A}\beta$ and early-tau burden between DS-MCI/AD and DS-CS individuals, between DS individuals with different intellectual disability levels, between $\text{A}\beta^+$ and $\text{A}\beta^-$ HABS-CS individuals, and between HABS-CS individuals who later developed cognitive impairment and those who remained stable. Age, sex, apolipoprotein E $\epsilon 4$ status, and premorbid intellectual disability levels (for DS) were included as covariates. Bonferroni correction was used to control for multiple comparisons. Linear regression analyses assessed associations between $\text{A}\beta$ and tau spatial pattern expressions, age, and clinical outcome (corrected for covariates) across individuals. Paired t tests were used to compare the overall magnitudes of spatial weights across cohorts, and linear regression analyses, followed by analyses of the residuals, were performed to assess similarities and differences in spatial patterns across cohorts. Significance was assessed at $P < 0.05$.

3 | RESULTS

3.1 | Participant characteristics

Characteristics of the participants in the ABC-DS and HABS studies are listed in Table 1 and Table 2, respectively.

3.1.1 | ABC-DS

Among the 145 individuals with DS, 116 were DS-CS, 12 were diagnosed as MCI (DS-MCI), 7 were diagnosed as AD (DS-AD), and 10 were undetermined. All participants ($n = 145$) underwent FTP tau PET, while 134 participants underwent PiB $\text{A}\beta$ PET, and 11 participants underwent FBP $\text{A}\beta$ PET.

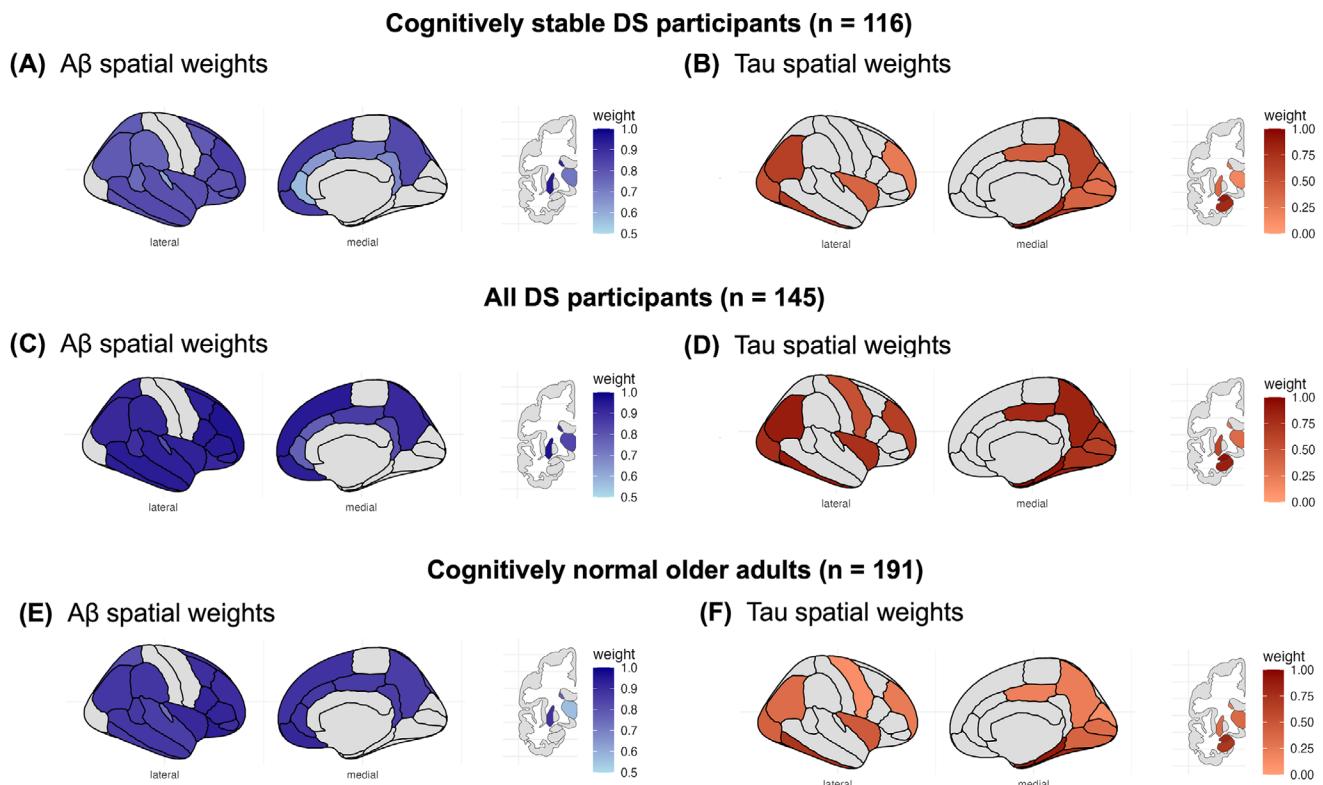
Assessing DS-MCI/DS-AD versus DS-CS clinical measures, the DS-MCI (age: 50.3 ± 5.3 years) and DS-AD (age: 52.0 ± 3.8 years) individuals were significantly older compared to the DS-CS individuals (age: 38.0 ± 8.1 years, $P < 0.0001$, DS-MCI: $t = 7.2$, confidence interval [CI]: 8.7–15.9; DS-AD: $t = 8.6$, CI: 10.4–17.7). The DS-MCI and DS-AD individuals showed worse performance compared to DS-CS individuals on the DLD social ($P < 0.001$, DS-MCI: $t = 7.2$, CI: 8.7–15.9; DS-AD: $t = 8.6$, CI: 10.4–17.7) and cognition assessments ($P < 0.001$, DS-MCI: $t = 2.8$, CI: 0.9–6.7; DS-AD: $t = 3.4$, CI: 2.5–14.8). The DS-MCI and DS-AD individuals also showed worse performance compared to DS-CS individuals on assessments of memory and executive function: DSMSE memory scores ($P < 0.0001$, DS-MCI: $t = -3.4$, CI: -3.1 to -0.7; DS-AD: $t = -3.9$, CI: -3.4 to -0.8), Cued Recall Task ($P < 0.0001$, DS-MCI: $t = -3.5$, CI: -12.6 to -2.8; DS-AD: $t = -4.0$, CI: -23.1 to -5.6), Face & Picture Recognition ($P < 0.001$, DS-MCI: $t = -4.5$, CI: -6.8 to -2.4; DS-AD: $t = -8.5$, CI: -7.2 to -4.2), and Stroop Dog and Cat ($P < 0.05$, DS-MCI: $t = 2.6$, CI: 2.7–31.0; DS-AD: $t = 1.6$, CI: 9.0–43.6). No group differences were observed in sex or premorbid intellectual disability level.

On DS-AD versus DS-CS clinical measures, the DS-AD individuals additionally showed worse performance compared to the DS-CS

individuals in the DSMSE total scores ($P < 0.0001$, $t = -3.8$, CI: -22.4 to -5.0), visuospatial function, and functional ability: DSMSE visuospatial scores ($P < 0.01$, $t = -4.4$, CI: -1.9 to -0.6), VMI ($P < 0.05$, $t = -2.2$, CI: -7.4 to -0.3), Block Design test ($P < 0.0001$, $t = -2.8$, CI: -11.5 to -0.7), and Vineland ($p < 0.01$, $t = -6.2$, CI: -33.4 to -15.1).

Evaluating DS-AD versus DS-MCI clinical measures, the DS-AD individuals showed worse performance compared to the DS-MCI individuals on DLD social ($P < 0.05$, $t = 1.7$, CI: 1.5–11.3) and cognition assessments ($P < 0.05$, $t = 1.8$, CI: 2.2–16.4), memory (Cued Recall Task, $t = -1.6$, CI: -15.9 to -2.6), and visuospatial function (Block Design test, $P < 0.05$, $t = -2.3$, CI: -11.0 to -0.1).

Assessing DS-MCI/DS-AD versus DS-CS PET measures, the DS-MCI and DS-AD individuals showed higher global $\text{A}\beta$ ($P < 10^{-6}$, DS-MCI: $t = 4.7$, CI: 0.21–0.56; DS-AD: $P < 10^{-16}$, $t = 6.1$, CI: 0.5–1.3) and tau burden in the entorhinal ($P < 10^{-10}$, DS-MCI: $t = 4.9$, CI: 0.3–0.7; DS-AD: $P < 10^{-6}$, $t = 3.6$, CI: 0.2–0.8) and inferior temporal cortex ($P < 10^{-8}$, DS-MCI: $t = 3.5$, CI: 0.2–0.8; DS-AD: $P < 10^{-10}$, $t = 3.2$, CI: 0.2–1.3) compared to the DS-CS individuals. There were no significant differences in $\text{A}\beta$ and tau burden between the DS-MCI and DS-AD individuals. There were no significant differences in $\text{A}\beta$ and tau burden between premorbid intellectual disability levels.


3.1.2 | HABS

Among the 191 cognitively normal older HABS-CS individuals (age: 76.3 ± 63 years), 85 were $\text{A}\beta^+$ and all underwent FTP tau PET and PiB $\text{A}\beta$ PET. There were no significant differences between $\text{A}\beta^+$ and $\text{A}\beta^-$ HABS-CS individuals in age, sex, education, or cognitive outcomes at baseline. The $\text{A}\beta^+$ individuals were significantly more likely to convert to cognitive impairment at clinical follow-ups compared to the $\text{A}\beta^-$ individuals ($P = 0.005$, $t = 2.6$, CI: 0.02–0.2) and exhibited significantly higher tau burden in the entorhinal ($P < 10^{-5}$, $t = 4.9$, CI: 0.05–0.1) and inferior temporal cortex compared to the $\text{A}\beta^-$ individuals ($P < 0.001$, $t = 3.9$, CI: 0.03–0.1).

3.2 | Multivariate analyses—associated $\text{A}\beta$ and tau spatial patterns

3.2.1 | DS-CS individuals

In DS-CS individuals, higher $\text{A}\beta$ weights in the temporal, parietal and frontal cortices, cingulate, and striatum was significantly associated with higher tau weights in early-tau regions ($P < 10^{-4}$, $\beta = 0.87$ [CI: 0.78–0.96], Figure 1A,B). Highest $\text{A}\beta$ weights were observed in the striatum (weights: 0.92–0.95) and frontal cortex (weights: 0.79–0.87; Table 3), while highest tau weights were observed in the entorhinal and amygdala (weights: 0.89; Table 4). Approximately 33% of DS-CS individuals showed positive subject scores, indicating their high expression of the joint $\text{A}\beta$ and tau spatial patterns. Higher expressions of the $\text{A}\beta$ pattern were correlated significantly with age ($P < 10^{-8}$, $\beta = 0.50$ [CI: 0.34–0.66]), but not with cognitive outcomes. Higher expressions of the tau pattern were correlated significantly with age ($P < 10^{-8}$,

FIGURE 1 MCCA-derived joint spatial patterns of A β and tau deposition. A,B, Across DS-CS individuals, elevated cortical and striatal A β burden (highest weights in the striatum and frontal cortex) was associated with elevated tau burden in early-to-intermediate tau regions, with highest weights in early-tau regions (e.g., entorhinal). C,D, Across all individuals with DS, elevated cortical and striatal A β burden (highest weights in the striatum and frontal cortex) was associated with elevated tau burden in early-to-late tau regions (highest weights in early tau regions). E,F, Across cognitively unimpaired HABS-CS individuals, elevated cortical A β burden (highest weights in the frontal cortex) was associated with elevated tau burden in early-tau regions, with the A β pattern exhibiting lower weights in the striatum compared to DS. * Regional weights were estimated for bilateral regions; however, for visualization purposes, only regional weights for the right hemisphere were displayed. A β , amyloid beta; CS, cognitively stable; DS, Down syndrome; HABS, Harvard Aging Brain Study; MCCA, multiset canonical correlation analysis

$\beta = 0.53$ [CI: 0.37–0.68]), and worse episodic memory (Cued Recall Task; $P < 0.05$, $\beta = -0.20$ [CI: -0.35 to -0.04]). There were no significant differences in pattern expressions in sex and premorbid intellectual disability levels.

3.2.2 | All DS individuals

Among all individuals with DS (116 DS-CS, 19 DS-MCI/AD, 10 undetermined), higher A β weights in the temporal, parietal and frontal cortices, cingulate, and striatum was significantly associated with higher tau weights in all tau-relevant regions ($P < 0.0001$, $\beta = 0.88$ [CI: 0.81–0.96], Figure 1C,D). Highest A β weights were observed in the striatum (weights: 0.89–0.96) and frontal cortex (weights: 0.91–0.96; Table 3), and highest tau weights were observed in early-tau regions, such as the entorhinal cortex, parahippocampus, amygdala, hippocampus, and inferior temporal (weights: 0.86–0.96; Table 4). Approximately 27% of DS individuals showed positive subject scores, indicating their high expression of the joint A β and tau spatial patterns. Higher expressions of the DS-related A β and tau spatial patterns were significantly correlated with age ($P < 10^{-13}$, A β pattern: $\beta = 0.63$ [CI: 0.50–0.76], tau

pattern: $\beta = 0.57$ [CI: 0.44–0.71]), worse episodic memory (Cued Recall Task; corrected $P < 10^{-7}$, A β pattern: $\beta = -0.38$ [CI: -0.51 to -0.36], tau pattern: $\beta = -0.49$ [CI: -0.62 to -0.36]), and executive function (Stroop Cat and Dog; corrected $P < 0.05$, A β pattern: $\beta = 0.14$ [CI: 0.01–0.27], tau pattern: $\beta = 0.16$ [CI: 0.02–0.29], Figure 2A,B). The A β ($P < 0.001$, DS-MCI: $t = 4.6$, CI: 0.7–2.0; DS-AD: $t = 4.7$, CI: 1.2–3.6) and tau ($P < 0.001$, DS-MCI: $t = 4.0$, CI: 0.7–2.3; DS-AD: $t = 4.3$, CI: 0.9–3.2) pattern expressions were significantly higher in DS-MCI/AD than DS-CS. There were no significant differences in pattern expressions between the DS-MCI and DS-AD individuals and in sex and premorbid intellectual disability levels. There were no significant differences in MCCA subject scores between the different ABC-DS participating sites, suggesting that site-specific factors did not significantly influence the results.

3.2.3 | Cognitively normal older adults

Among the HABS-CS participants, higher A β weights in cortical regions were associated with higher tau weights in early-tau regions ($P < 0.0001$, $\beta = 0.49$ [CI: 0.37–0.62], Figure 1E,F). Highest A β weights

TABLE 3 MCCA-derived regional weights [95% CI] for the A β spatial patterns across the three cohorts, ranked from highest to lowest by region in each cohort.

All DS	DS-CS	HABS-CS
Putamen	Putamen	Lateral orbitofrontal
Rostral Middle Frontal	0.96 [0.94–0.97]	Ventral striatum
Parstriangularis	0.95 [0.92–0.96]	Caudate
Parsopercularis	0.95 [0.92–0.96]	Superior frontal
Superior frontal	0.94 [0.92–0.96]	Medial orbitofrontal
Ventral striatum	0.94 [0.92–0.96]	Rostral middle frontal
Middle temporal	0.94 [0.92–0.96]	Precuneus
Medial orbitofrontal	0.94 [0.91–0.95]	Middle temporal
Inferior temporal	0.93 [0.91–0.95]	Insula
Superior temporal	0.93 [0.9–0.95]	Parsopercularis
Caudal middle frontal	0.93 [0.9–0.95]	Parstriangularis
Parsorbitalis	0.93 [0.9–0.95]	Superior temporal
Insula	0.93 [0.9–0.95]	Inferior temporal
Superior parietal	0.92 [0.88–0.94]	Parsorbitalis
Supramarginal	0.91 [0.88–0.94]	Lateral orbitofrontal
Lateral Orbitofrontal	0.91 [0.88–0.93]	Inferior parietal
Precuneus	0.91 [0.88–0.93]	Caudal middle frontal
Inferior parietal	0.91 [0.87–0.93]	Superior parietal
Caudate	0.89 [0.85–0.92]	Supramarginal
Bankssts	0.89 [0.85–0.92]	Bankssts
Posterior cingulate	0.86 [0.81–0.9]	Posterior cingulate
Thalamus	0.83 [0.78–0.88]	Thalamus
Transverse temporal	0.82 [0.76–0.87]	Isthmus cingulate
Isthmus cingulate	0.82 [0.75–0.86]	Caudal anterior cingulate
Caudal anterior cingulate	0.78 [0.71–0.84]	Transverse temporal
Rostral anterior cingulate	0.77 [0.7–0.83]	Rostral anterior cingulate
Cerebral white matter	0.62 [0.51–0.71]	Cerebral white matter

Abbreviation: A β , amyloid beta; CI, confidence interval; DS, Down syndrome; DS-CS, cognitively stable Down syndrome individuals; HABS-CS, cognitively normal/stable older adults in the Harvard Aging Brain Study cohort; MCCA, multiset canonical correlation analysis.

were observed in the frontal cortex (weights: 0.88–0.94), with lower A β weights observed in the striatum (weights: 0.77–0.89; Table 3). Highest tau weights were observed in early-tau regions (weights: 0.71–0.88; Table 4). The expressions of the A β pattern were not significantly correlated with age or cognitive outcomes. Approximately 41% of DS individuals showed positive subject scores, indicating their high expression of the joint A β and tau spatial patterns. Higher expressions of the tau pattern were correlated significantly with age ($P < 0.001$, $\beta = 0.26$ [CI: 0.13–0.40]), and worse global cognition (PACC-5: corrected $P < 0.05$, $\beta = -0.18$ [CI: -0.33 to -0.03], MMSE total scores: corrected $P < 0.01$, $\beta = -0.22$ [CI: -0.36 to -0.08]), and episodic memory (Free and Cued Selective Reminding Test, age-corrected $P < 0.01$, $\beta = -0.26$ [CI: -0.39 to -0.12]). The A β + individuals showed significantly higher expressions of both A β ($P < 10^{-16}$, $t = 11.6$, CI: 1.1–1.6) and tau ($P < 10^{-6}$, $t = 5.2$, CI: 0.5–1.0) patterns compared to the A β –

individuals. The expressions of the A β ($P < 0.001$, $t = 4.3$, CI: 0.7–2.0) and tau ($P < 0.001$, $t = 4.1$, CI: 0.9–2.9) patterns were significantly higher in HABS-CS individuals who progressed to MCI/AD compared to those who remained cognitively normal. Associations between pattern expressions and clinical outcomes in each cohort are shown in Figure S2 in supporting information.

3.2.4 | Comparisons of A β and tau spatial patterns across cohorts

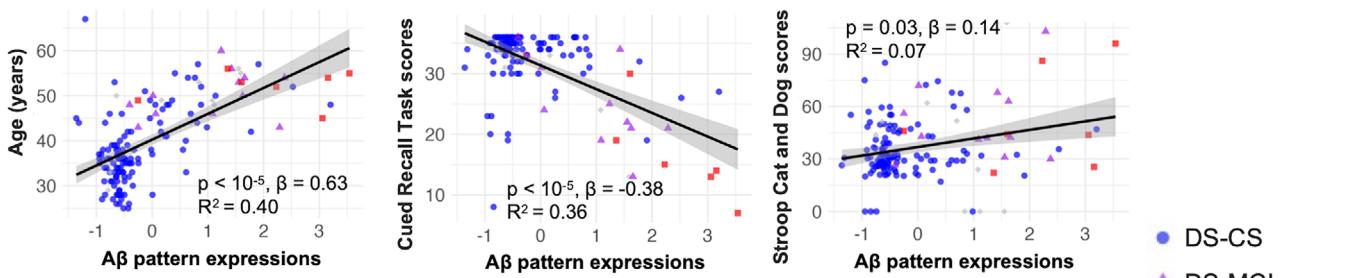
For A β spatial patterns, strong similarity was observed between patterns obtained with all DS and DS-CS individuals ($R^2 = 0.85$), with the largest regional difference in the caudate and higher overall spatial weights in the pattern obtained with all DS ($t = 10.3$, CI: 0.10–0.14,

TABLE 4 MCCA-derived regional weights [95% CI] for the tau spatial patterns across the three cohorts, ranked from highest to lowest by region in each cohort.

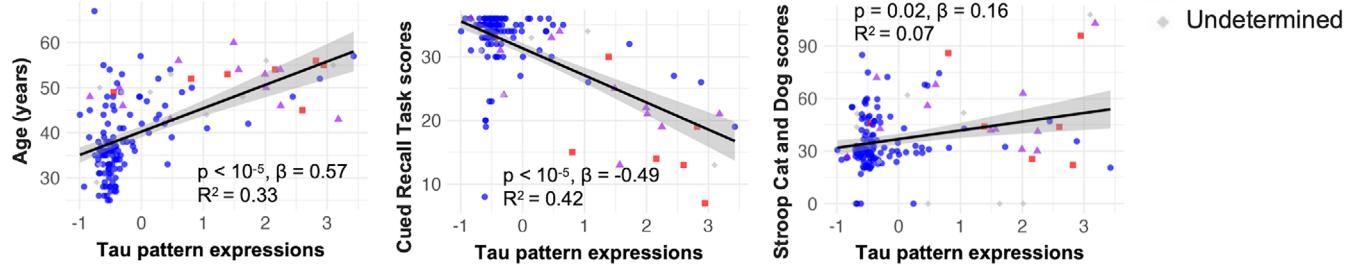
All DS	DS-CS		HABS-CS	
Entorhinal	0.96 [0.94–0.97]	Entorhinal	0.89 [0.85–0.92]	Parahippocampal
Amygdala	0.94 [0.92–0.96]	Amygdala	0.89 [0.84–0.92]	Entorhinal
Parahippocampal	0.93 [0.9–0.95]	Hippocampus	0.79 [0.71–0.85]	Fusiform
Inferior temporal	0.89 [0.84–0.92]	Parahippocampal	0.79 [0.71–0.85]	Amygdala
Inferior parietal	0.88 [0.83–0.91]	Fusiform	0.67 [0.56–0.76]	Inferior temporal
Hippocampus	0.86 [0.82–0.9]	Inferior temporal	0.67 [0.56–0.76]	Hippocampus
Fusiform	0.86 [0.81–0.9]	Inferior parietal	0.65 [0.53–0.74]	Insula
Precuneus	0.84 [0.78–0.88]	Precuneus	0.6 [0.47–0.71]	Cerebral white matter
Posterior cingulate	0.8 [0.73–0.85]	Lateral occipital	0.52 [0.38–0.64]	Lateral occipital
Lateral occipital	0.78 [0.71–0.84]	Posterior cingulate	0.43 [0.27–0.57]	Lingual
Cerebral white matter	0.77 [0.69–0.83]	Lingual	0.4 [0.24–0.54]	Thalamus
Insula	0.75 [0.67–0.81]	Cuneus	0.4 [0.23–0.54]	Putamen
Lingual	0.74 [0.65–0.8]	Insula	0.39 [0.23–0.54]	Inferior parietal
Cuneus	0.72 [0.63–0.79]	Putamen	0.37 [0.2–0.51]	Pericalcarine
Rostral middle frontal	0.66 [0.56–0.74]	Cerebral white matter	0.33 [0.16–0.48]	Rostral middle frontal
Pericalcarine	0.65 [0.55–0.74]	Pericalcarine	0.31 [0.13–0.46]	Precuneus
Putamen	0.61 [0.5–0.71]	Caudate	0.25 [0.07–0.42]	Caudate
Precentral	0.53 [0.4–0.63]	Rostral middle frontal	0.25 [0.07–0.41]	Posterior cingulate
Anterior cingulate	0.46 [0.32–0.58]	Thalamus	0.17 [−0.01–0.34]	Cuneus
Thalamus	0.35 [0.2–0.49]	Precentral	−0.04 [−0.22–0.14]	Precentral
Caudate	0.28 [0.13–0.43]	Anterior cingulate	−0.08 [−0.25–0.11]	Anterior cingulate
				0.09 [−0.05–0.23]

Abbreviation: CI, confidence interval; DS, Down syndrome; DS-CS, cognitively stable Down syndrome individuals; HABS-CS, cognitively normal/stable older adults in the Harvard Aging Brain Study cohort; MCCA, multiset canonical correlation analysis.

$P < 10^{-9}$). A weaker similarity was found between DS-CS and HABS-CS ($R^2 = 0.42$), with notable differences in the striatum and cingulate regions and slightly higher overall spatial weights in HABS-CS ($t = 3.3$, CI: 0.02–0.11, $P = 0.003$). Comparisons between the patterns obtained with all DS and HABS-CS individuals showed moderate similarity ($R^2 = 0.57$), with regional differences concentrated in the cingulate cortex and higher overall spatial weights in the pattern obtained with all DS ($t = 3.1$, CI: 0.02–0.09, $P = 0.005$).


For tau spatial patterns, strong similarity was observed between patterns obtained with all DS and DS-CS individuals ($R^2 = 0.72$), with differences mainly in regions with low tau weights (e.g., caudate, thalamus), and higher overall spatial weights in the pattern obtained with all DS ($t = 8.1$, CI: 0.20–0.34, $P < 10^{-7}$). Moderate similarity was found between DS-CS and HABS-CS ($R^2 = 0.67$), with the largest regional differences in the precuneus and inferior parietal cortex; however, there was no significant difference in overall tau spatial weight ($P = \text{n.s.}$). Comparisons between the patterns obtained with all DS and HABS-CS individuals revealed weaker similarity ($R^2 = 0.45$), with the largest regional differences in the thalamus, caudate, precuneus, inferior parietal, and posterior cingulate, and significantly higher overall spatial weights in the pattern obtained with all DS ($t = 6.8$, CI: 0.20–0.38, $P < 10^{-5}$).

4 | DISCUSSION


This study provides further evidence that individuals with DS exhibit AD neuropathology ($A\beta$ and tau) with both overlapping and distinct features compared to neurotypical aging. By leveraging multimodal imaging and cognitive data from ABC-DS and HABS research cohorts, this study offers a direct comparison of the $A\beta$ and tau associations between DS and neurotypical aging individuals exhibiting preclinical AD pathology. A multivariate joint pattern analysis, MCCA, was applied to PET uptake values in 27 $A\beta$ -relevant and 21 tau-relevant regions to provide a more informative evaluation of the $A\beta$ and tau spatial associations beyond a global or regional composite (e.g., aggregate regions based on Braak NFT staging). Our results suggest that DS-CS individuals exhibited lower cortical $A\beta$ but higher tau burden compared to neurotypical aging individuals also exhibited $A\beta$ and tau burden. On the other hand, DS individuals with MCI or AD (DS-MCI/AD) exhibited more widespread $A\beta$ and tau burden. The $A\beta$ -associated tau burden was significantly linked to episodic memory impairment in both DS-CS and HABS-CS, even prior to clinical dementia. Moreover, executive function impairments emerged later as DS advanced. These findings are further supported by other findings consistent with prior studies, as discussed below.

Associations between A β -tau pattern expressions and clinical measures in DS (n = 145)

(A) Expressions of the A β spatial patterns

(B) Expressions of the tau spatial patterns

FIGURE 2 Associations between joint A β and tau pattern expressions (subject scores) and clinical outcomes across all DS individuals. Higher expressions of the DS-related A β (A) and tau (B) patterns expressions were correlated significantly with older age and worse episodic memory (Cued Recall Task scores) and executive function (Stroop Dog and Cat scores). A β , amyloid beta; AD, Alzheimer's disease; CS, cognitively stable; DS, Down syndrome; MCI, mild cognitive impairment

Strong associations between relatively higher cortical A β (especially in the frontal cortex) and tau burden in early-tau regions were observed in both neurotypical aging and DS populations, even prior to a clinical diagnosis of MCI/AD. The A β -associated tau burden was most pronounced in early-tau regions, including the entorhinal cortex and amygdala. Higher expressions of these spatial patterns at baseline were predictive of future conversion to MCI/AD in the HABS neurotypical aging cohort, suggesting that these patterns reflect pre-clinical AD deficits. These findings align with prior A β and tau PET studies in DS^{12,14–17,40–42} and support the “amyloid cascade hypothesis” in DS, which posits that A β accelerates tau burden, driving neurodegeneration and cognitive decline.^{43–47}

Despite these shared features, key differences emerged between neurotypical aging and DS. In DS, relatively higher striatal A β burden was most strongly associated with relatively higher early tau burden, persisting across both CS and cognitively impaired stages. This is consistent with prior studies in DS and autosomal dominant AD, further supporting the potential of early striatal A β burden as an imaging biomarker for tracking disease progression and informing clinical trial inclusion in DS.^{5,7,25,48}

Beyond the common cortical A β and early tau burden patterns, MCCA revealed more nuanced differences in A β and tau spatial associations between DS and neurotypical aging by analyzing the joint spatial patterns of A β and tau burden across multiple brain regions rather than relying on predefined regional composites. In particular, relatively lower cortical A β burden but relatively higher tau burden in more

widespread tau-relevant regions were observed in DS-CS compared to neurotypical aging. The lower cortical A β burden in DS-CS may partially reflect partial volume effects in PET quantification, driven by greater cortical atrophy or brain volume loss in DS relative to neurotypical aging. Another potential confound is the use of a DS-specific template to extract PET regional outcomes instead of individual-specific segmentations. Future studies will incorporate MR-based volumetric measures in the analyses and individual-specific FreeSurfer segmentations to formally assess the impact of potential confounds on these results. In DS-CS individuals who exhibited relatively higher striatal and cortical A β burden, tau burden extended beyond early-tau regions to intermediate-to-advanced tau regions (e.g., precuneus and inferior parietal), whereas in neurotypical aging, tau burden remained restricted to early-tau regions despite similarly elevated cortical A β burden. This suggests that, for the same level of A β burden, individuals with DS may exhibit higher and more widespread tau burden compared to neurotypical aging, even before a clinical diagnosis of MCI/AD. Similar findings have been reported in DS compared to autosomal dominant AD as well as shorter latency between A β + onset and early tau burden (2.5 years) relative to sporadic AD (5–10 years).^{15–17} Our results provide a more direct comparison of the A β and tau association between DS and neurotypical aging individuals exhibiting preclinical AD pathology, further supporting that tau pathology in DS may follow a distinct trajectory from that observed in neurotypical aging.

When including DS-MCI/AD individuals, relatively higher cortical A β burden associated with relatively higher and more widespread

tau burden were observed compared to both DS-CS and neurotypical aging. While striatal A β weights remained similar to that observed in DS-CS, the elevated cortical A β weights in DS-MCI/AD likely reflects disease progression, despite the expected influence of more pronounced cortical atrophy and partial volume effect in DS-MCI/AD. For DS individuals with relatively higher striatal and cortical A β burden, more widespread tau was observed; however, the highest tau weights remained localized to early-tau regions. This suggests that tau burden in early-tau regions may not have reached a plateau in our sample. Further studies with larger DS-MCI/AD cohorts are needed to comprehensively evaluate A β and tau burden patterns as the disease progresses.

The evaluation of the joint spatial associations between A β and tau burden revealed A β -associated tau spatial patterns, whose expressions were associated with early episodic memory impairment in both neurotypical aging and DS, prior to a clinical diagnosis of dementia. This suggests that individuals with elevated A β and early tau burden already exhibit subtle cognitive impairment, with tau burden playing a significant role. These results were adjusted for expected age-related increases in A β and tau burden.^{49–51} These findings align with previous cross-sectional and longitudinal studies reporting similar associations between regional tau burden and episodic memory decline, reinforcing the idea that episodic memory impairment may serve as an early indicator of cognitive impairment in DS.^{18–20,52} Given that the HABS neurotypical aging cohort is \approx 30 years older than the DS cohort, the similar associations between A β -associated early tau burden and episodic memory impairment in both groups may reflect accelerated aging and preclinical AD deficits in DS. As the disease progressed, DS individuals with relatively higher A β burden and more widespread tau burden exhibited additional impairments in executive function. This progression likely reflects the spatial spread of AD-related neuropathology from memory-related regions to regions involved in decision making and planning, such as the frontal-striatal pathway. These findings further highlight the potential sequential impact of A β and tau on distinct cognitive domains over time.

There are several methodological considerations in this study. First, the PET imaging data were acquired and analyzed using different acquisition and preprocessing protocols. In the HABS dataset, PET analyses were performed in the native space using FreeSurfer segmentations with manual edits, and A β burden was quantified as DVR using dynamic PiB PET data. These steps were consistent with prior HABS studies using the same data.^{39,53} In the ABC-DS dataset, PET analyses were performed in a template space using FreeSurfer segmentations with manual edits, instead of using segmentations in the native space. This used a DS-specific MR template, previously validated against individual-based MR segmentations.³⁷ Second, two A β PET radioligands (FBP and PiB) were used in the ABC-DS dataset. While both provided comparable global A β burden estimates, regional differences were noted, particularly in detecting early striatal A β accumulation, likely due to differences in binding characteristics to A β subtypes.^{7,54,55} Sensitivity analyses using only PiB PET data yielded consistent results (not shown). To address differences in acquisition protocols and radioligands, we used z transformation instead of the Centiloid scale to

quantify regional A β burden across the cortex, enabling more detailed regional analyses rather than relying on a global A β measure. A key strength of this study is the use of multivariate analysis, specifically MCCA, to jointly evaluate A β and tau uptake across multiple brain regions. This approach mitigates issues related to multiple comparisons and is less affected by protocol differences, as MCCA identifies spatial patterns based on relative relationships between regions.

Important study limitations include the relatively small number of DS individuals with MCI or AD (DS-MCI/AD: $n = 19$), which limits the ability to comprehensively evaluate spatial associations between A β and tau burden and cognitive impairment in later disease stages. Future studies with larger DS-MCI/AD samples are needed to address this gap. Additionally, the ABC-DS and HABS cohorts used different cognitive assessment protocols; however, both included episodic memory measures through recall tasks, allowing for some comparability. The cross-sectional design of this study precludes analysis of the spatiotemporal relationships between A β and tau burden. Longitudinal studies are necessary to clarify these dynamics and their relationship to cognitive decline in DS and aging populations. Future research should also include sibling controls of individuals with DS to provide a deeper understanding of the genetic and environmental factors influencing AD pathology in DS.

In conclusion, the study underscores both overlapping and distinct features of AD-related neuropathology in DS and neurotypical aging. By jointly analyzing A β and tau burden across multiple brain regions, our results suggest that for a given level of A β burden, tau pathology was more widespread in DS compared to neurotypical aging, even prior to a clinical diagnosis of dementia. Moreover, A β -associated tau burden patterns were linked to impairment in episodic memory and executive function in DS, reflecting the progressive impact of AD-related neuropathology on cognition. These findings highlight the importance of biomarker-driven strategies for early detection and intervention in DS.

ACKNOWLEDGMENTS

The authors disclosed receipt of the following financial support: 3U19AG068054-03S3, K99AG081457, P01AG036694, R01AG046396, P41EB030006, and P41EB015896.

CONFLICT OF INTEREST STATEMENT

The authors declare no conflicts of interest. Author disclosures are available in the [supporting information](#).

CONSENT STATEMENT

The ABC-DS cohort study was approved by the local institutional review board at each participating site, and informed consent was obtained from all participants or their proxy/legally authorized representatives. The HABS cohort study was approved by the Mass General Brigham Human Research Committee, and informed consent was obtained from all participants.

ORCID

Jessie Fanglu Fu <https://orcid.org/0000-0002-4970-7811>

REFERENCES

1. Abrahamson EE, Head E, Lott IT, et al. Neuropathological correlates of amyloid PET imaging in Down syndrome. *Dev Neurobiol*. 2019;79:750-766.
2. Head E, Lott IT, Wilcock DM, Lemere CA. Aging in Down syndrome and the development of Alzheimer's disease neuropathology. *Curr Alzheimer Res*. 2016;13:18-29.
3. Handen BL, Lott IT, Christian BT, et al. The Alzheimer's biomarker consortium-Down syndrome: rationale and methodology. *Alzheimers Dement (Amst)*. 2020;12. doi:[10.1002/DAD2.12065](https://doi.org/10.1002/DAD2.12065)
4. Iulita MF, Garzón Chavez D, Klitgaard Christensen M, et al. Association of Alzheimer disease with life expectancy in people with Down syndrome. *JAMA Netw Open*. 2022;5:e2212910-e2212910. doi:[10.101/JAMANETWORKOPEN.2022.12910](https://doi.org/10.101/JAMANETWORKOPEN.2022.12910)
5. Lao PJ, Handen BL, Betthauser TJ, et al. Longitudinal changes in amyloid positron emission tomography and volumetric magnetic resonance imaging in the nondemented Down syndrome population. *Alzheimers Dement (N Y)*. 2017;9:1-9.
6. Handen BL, Cohen AD, Channamalappa U, et al. Imaging brain amyloid in nondemented young adults with Down syndrome using Pittsburgh compound B. *Alzheimers Dement*. 2012;8:496-501.
7. McLachlan M, Bettcher B, McVea A, et al. The striatum is an early, accurate indicator of amyloid burden using [¹¹C]PiB in Down syndrome: comparison of two radiotracers. *Alzheimers Dement*. 2025;21:e70141. doi:[10.1002/alz.70141](https://doi.org/10.1002/alz.70141)
8. Cohen AD, McDade E, Christian B, et al. Early striatal amyloid deposition distinguishes Down syndrome and autosomal dominant Alzheimer's disease from late-onset amyloid deposition. *Alzheimers Dement*. 2018;14:743-750. doi:[10.1016/j.jalz.2018.01.002](https://doi.org/10.1016/j.jalz.2018.01.002)
9. Lao PJ, Betthauser TJ, Hillmer AT, et al. The effects of normal aging on amyloid-beta deposition in nondemented adults with Down syndrome as imaged by carbon 11-labeled Pittsburgh compound B. *Alzheimers Dement*. 2016;12:380-390.
10. Hartley SL, Handen BL, Devenny DA, et al. Cognitive functioning in relation to brain amyloid- β in healthy adults with Down syndrome. *Brain* 2014;137:2556-2563. doi:[10.1093/brain/awu173](https://doi.org/10.1093/brain/awu173)
11. Tudorascu DL, Anderson SJ, Minhas DS, et al. Comparison of longitudinal Abeta in nondemented elderly and Down syndrome. *Neurobiol Aging*. 2019;73:171-176.
12. Rafii MS. Tau PET imaging for staging of Alzheimer's disease in Down syndrome. *Dev Neurobiol*. 2019;79:711-715.
13. Padilla C, Montal V, Walpert MJ, et al. Cortical atrophy and amyloid and tau deposition in Down syndrome: a longitudinal study. *Alzheimers Dement (N Y)*. 2022;14:e12288.
14. Tudorascu DL, Laymon CM, Zammit M, et al. Relationship of amyloid beta and neurofibrillary tau deposition in neurodegeneration in aging Down Syndrome (NiAD) study at baseline. *Alzheimers Dement (N Y)*. 2020;6:e12096.
15. Zammit MD, Tudorascu DL, Laymon CM, et al. Neurofibrillary tau depositions emerge with subthreshold cerebral beta-amyloidosis in Down syndrome. *Neuroimage Clin*. 2021;31:102740.
16. Zammit MD, Betthauser TJ, McVea AK, et al. Characterizing the emergence of amyloid and tau burden in Down syndrome. *Alzheimers Dement*. 2024;20:388-398. doi:[10.1002/ALZ.13444](https://doi.org/10.1002/ALZ.13444)
17. Wisch JK, McKay NS, Boerwinkle AH, et al. Comparison of tau spread in people with Down syndrome versus autosomal-dominant Alzheimer's disease: a cross-sectional study. *Lancet Neurol*. 2024;23:500-510. doi:[10.1016/S1474-4422\(24\)00084-X](https://doi.org/10.1016/S1474-4422(24)00084-X)
18. Hartley SL, Handen BL, Tudorascu D, et al. Role of tau deposition in early cognitive decline in Down syndrome. *Alzheimers Dement (Amst)*. 2022;14:e12256.
19. Grigorova M, Mak E, Brown SSG, et al. Amyloid- β and tau deposition influences cognitive and functional decline in Down syndrome. *Neurobiol Aging*. 2022;119:36-45. doi:[10.1016/j.neurobiolaging.2022.07.003](https://doi.org/10.1016/j.neurobiolaging.2022.07.003)
20. Hartley SL, Handen BL, Devenny D, et al. Cognitive indicators of transition to preclinical and prodromal stages of Alzheimer's disease in Down syndrome. *Alzheimers Dement (Amst)*. 2020;12:e12096.
21. Rafii MS, Fortea J. Down Syndrome in a new era for Alzheimer disease. *JAMA*. 2023;330:2157-2158. doi:[10.1001/JAMA.2023.22924](https://doi.org/10.1001/JAMA.2023.22924)
22. Krasny S, Yan C, Hartley SL, et al. Assessing amyloid PET positivity and cognitive function in Down syndrome to guide clinical trials targeting amyloid. *Alzheimers Dement*. 2024;20:5570-5577. doi:[10.1002/ALZ.14068](https://doi.org/10.1002/ALZ.14068)
23. Rafii MS. Alzheimer's Disease in Down Syndrome: progress in the design and conduct of drug prevention trials. *CNS Drugs*. 2020;34:785-794. doi:[10.1007/S40263-020-00740-6](https://doi.org/10.1007/S40263-020-00740-6)
24. Sukreet S, Rafii MS, Rissman RA. From understanding to action: exploring molecular connections of Down syndrome to Alzheimer's disease for targeted therapeutic approach. *Alzheimers Dement (Amst)*. 2024;16:e12580. doi:[10.1002/DAD2.12580](https://doi.org/10.1002/DAD2.12580)
25. Tudorascu DL, Anderson SJ, Minhas DS, et al. Comparison of longitudinal Abeta in nondemented elderly and Down syndrome. *Neurobiol Aging*. 2019;73:171-176. doi:[10.1016/j.neurobiolaging.2018.09.030](https://doi.org/10.1016/j.neurobiolaging.2018.09.030)
26. Fu JF, Klyuzhin I, McKenzie J, et al. Joint pattern analysis applied to PET DAT and VMAT2 imaging reveals new insights into Parkinson's disease induced presynaptic alterations. *Neuroimage Clin*. 2019;23:101856. doi:[10.1016/j.nicl.2019.101856](https://doi.org/10.1016/j.nicl.2019.101856)
27. Correa NM, Eicheler T, Adali T, Li Y-Q, Calhoun VD. Multi-set canonical correlation analysis for the fusion of concurrent single trial ERP and functional MRI. *Neuroimage*. 2010;50:1438-1445. doi:[10.1016/j.neuroimage.2010.01.062](https://doi.org/10.1016/j.neuroimage.2010.01.062)
28. Tosun D, Landau S, Aisen PS, et al. Association between tau deposition and antecedent amyloid- β accumulation rates in normal and early symptomatic individuals. *Brain*. 2017;140:1499-1512. doi:[10.1093/brain/awx046](https://doi.org/10.1093/brain/awx046)
29. Matthews DC, Lukic AS, Andrews RD, et al. Dissociation of Down syndrome and Alzheimer's disease effects with imaging. *Alzheimers Dement (N Y)*. 2016;2:69-81. doi:[10.1016/j.jtrci.2016.02.004](https://doi.org/10.1016/j.jtrci.2016.02.004)
30. Hartley SL, Fleming V, Schworer EK, et al. Timing of Alzheimer's disease by intellectual disability level in Down syndrome. *J Alzheimers Dis*. 2023;95:213. doi:[10.3233/JAD-230200](https://doi.org/10.3233/JAD-230200)
31. Handen BL, Lott IT, Christian BT, et al. The Alzheimer's biomarker consortium-Down syndrome: rationale and methodology. *Alzheimers Dement (Amst)*. 2020;12:e12065.
32. Morris JC. Clinical Dementia Rating: a Reliable and Valid Diagnostic and Staging Measure for Dementia of the Alzheimer Type. *Int Psychogeriatr*. 1997;9:173-176. doi:[10.1017/S1041610297004870](https://doi.org/10.1017/S1041610297004870)
33. Papp KV, Rentz DM, Orlovsky I, Sperling RA, Mormino EC. Optimizing the preclinical Alzheimer's cognitive composite with semantic processing: the PACC5. *Alzheimers Dement (N Y)*. 2017;3:668-677. doi:[10.1016/j.jtrci.2017.10.004](https://doi.org/10.1016/j.jtrci.2017.10.004)
34. Landau SM, Breault C, Joshi AD, et al. Amyloid- β imaging with Pittsburgh compound b and florbetapir: comparing radiotracers and quantification methods. *J Nucl Med*. 2013;54:70-77. doi:[10.2967/JNUMED.112.109009](https://doi.org/10.2967/JNUMED.112.109009)
35. Tustison NJ, Cook PA, Holbrook AJ, et al. The ANTsX ecosystem for quantitative biological and medical imaging. *Sci Rep*. 2021;11:9068. doi:[10.1038/s41598-021-87564-6](https://doi.org/10.1038/s41598-021-87564-6)
36. Kelley W, Ngo N, Dalca A V, Fischl B, Zöllei L, Hoffmann M. Boosting skull-stripping performance for pediatric brain images. *IEEE Int Symp Biomed Imaging*. 2024;2024. doi:[10.1109/isbi56570.2024.10635307](https://doi.org/10.1109/isbi56570.2024.10635307)
37. Queder N, Phelan MJ, Taylor L, et al. Joint-label fusion brain atlases for dementia research in Down syndrome. *Alzheimers Dement (Amst)*. 2022;14. doi:[10.1002/DAD2.12324](https://doi.org/10.1002/DAD2.12324)
38. Braak H, Thal DR, Ghebremedhin E, Del Tredici K. Stages of the pathologic process in Alzheimer disease: age categories from 1 to 100 years. *J Neuropathol Exp Neurol*. 2011;70:960-969.

39. Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease. *Ann Neurol.* 2016;79:110-119. doi:[10.1002/ana.24546](https://doi.org/10.1002/ana.24546)

40. Tudorascu DL, Laymon CM, Zammit M, et al. Relationship of amyloid beta and neurofibrillary tau deposition in neurodegeneration in aging Down syndrome (NiAD) study at baseline. *Alzheimers Dement (N Y).* 2020;6:e12096. doi:[10.1002/TRC2.12096](https://doi.org/10.1002/TRC2.12096)

41. Hartley SL, Handen B, Tudorascu D, et al. AT(N) biomarker profiles and Alzheimer's disease symptomatology in Down syndrome. *Alzheimers Dement.* 2024;20:366-375. doi:[10.1002/alz.13446](https://doi.org/10.1002/alz.13446)

42. Rafii MS, Ances BM, Schupf N, et al. The AT(N) framework for Alzheimer's disease in adults with Down syndrome. *Alzheimers Dement (Amst).* 2020;12:e12062. doi:[10.1002/DAD2.12062](https://doi.org/10.1002/DAD2.12062)

43. Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *Science* (1979). 2002;297:353-356. doi:[10.1126/SCIENCE.1072994](https://doi.org/10.1126/SCIENCE.1072994)

44. Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. *Science* (1979). 1992;256:184-185.

45. Sperling R, Mormino E, Johnson K. The evolution of preclinical Alzheimer's disease: implications for prevention trials. *Neuron.* 2014;84:608-622.

46. Hardy J. The discovery of Alzheimer-causing mutations in the APP gene and the formulation of the "amyloid cascade hypothesis". *FEBS J.* 2017;284:1040-1044. doi:[10.1111/FEBS.14004](https://doi.org/10.1111/FEBS.14004)

47. Strydom A, Coppel A, Blesa R, et al. Alzheimer's disease in Down syndrome: an overlooked population for prevention trials. *Alzheimers Dement (N Y).* 2018;4:703-713. doi:[10.1016/J.TRCI.2018.10.006](https://doi.org/10.1016/J.TRCI.2018.10.006)

48. Cohen AD, McDade E, Christian B, et al. Early striatal amyloid deposition distinguishes Down syndrome and autosomal dominant Alzheimer's disease from late-onset amyloid deposition. *Alzheimers Dement.* 2018;14:743-750.

49. Lao PJ, Betthauser TJ, Hillmer AT, et al. The effects of normal aging on amyloid- β deposition in nondemented adults with Down syndrome as imaged by carbon 11-labeled Pittsburgh compound B. *Alzheimers Dement.* 2016;12:380-390. doi:[10.1016/j.jalz.2015.05.013](https://doi.org/10.1016/j.jalz.2015.05.013)

50. Jennings D, Seibyl J, Sabbagh M, et al. Age dependence of brain b-amyloid deposition in Down syndrome: an [18F]florbetaben PET study. *Neurology.* 2015;84:500-507. doi:[10.1212/WNL.0000000000001212](https://doi.org/10.1212/WNL.0000000000001212)

51. Rafii MS, Lukic AS, Andrews RD, et al. PET imaging of tau pathology and relationship to amyloid, longitudinal MRI, and cognitive change in Down syndrome: results from the Down syndrome biomarker initiative (DSBI). *J Alzheimers Dis.* 2017;60:439-450. doi:[10.3233/JAD-170390](https://doi.org/10.3233/JAD-170390)

52. Hartley SL, Handen BL, Devenny DA, et al. Cognitive functioning in relation to brain amyloid-beta in healthy adults with Down syndrome. *Brain.* 2014;137:2556-2563.

53. Sperling RA, Mormino EC, Schultz AP, et al. The impact of amyloid-beta and tau on prospective cognitive decline in older individuals. *Ann Neurol.* 2019;85:181-193. doi:[10.1002/ana.25395](https://doi.org/10.1002/ana.25395)

54. Ikonomovic MD, Buckley CJ, Abrahamson EE, et al. Post-mortem analyses of PiB and flutemetamol in diffuse and cored amyloid- β plaques in Alzheimer's disease. *Acta Neuropathol.* 2020;140:463-476. doi:[10.1007/S00401-020-02175-1](https://doi.org/10.1007/S00401-020-02175-1)

55. Okamura N, Yanai K. Florbetapir (18F), a PET imaging agent that binds to amyloid plaques for the potential detection of Alzheimer's disease. *IDrugs.* 2010;13:890-899.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Fu JF, Garimella A, Lapointe A, et al. Joint spatial associations of amyloid beta and tau pathology in Down syndrome and preclinical Alzheimer's disease: Cross-sectional associations with early cognitive impairments. *Alzheimer's Dement.* 2025;21:e70424.
<https://doi.org/10.1002/alz.70424>