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Abstract

Background: Long-lived individuals and their offspring have healthier metabolic characteristics
than expected, such as more favorable levels of fasting glucose, insulin, and lipids than controls
without longevity. Dysregulation in metabolic pathways has also shown to predict accelerated
aging. Using information from the Long Life Family Study (LLFS), a multi-center study of two-
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generation families selected for exceptional longevity, we developed an indicator of healthy
metabolism to determine whether metabolic health was more prevalent in a subset of LLFS
families and whether it was heritable and associated with other metrics of healthy aging.

Methods: A Latent Profile Analysis was applied to age- and gender-adjusted z-scores of fasting
levels of glucose, insulin, triglycerides, and high-density lipoprotein cholesterol, body mass index,
waist circumference, interleukin-6, and C-reactive protein. Families were defined as meeting the
healthy metabolic phenotype if =2 and =50% of their offspring were classified into a latent
subgroup with a profile of healthier metabolic markers than expected given age and gender relative
to all LLFS offspring.

Results: The log odds of being classified into the latent subgroup with a healthy profile of
metabolic markers was heritable (h? = 0.40, p < 0.001). Among 388 families, 39 (10%) met the
healthy metabolic phenotype. Participants from these families had somewhat better cognition than
those from remaining families. Proband-generation participants from families who met the healthy
metabolic phenotype also had better pulmonary functioning and physical performance.

Conclusions: The better cognition, pulmonary function, and physical performance among
probands from families with the healthy metabolic phenotype may indicate that this subset of
LLFS families have a more extreme longevity phenotype than other LLFS families since cognitive,
physical, and pulmonary function are top mortality predictors for older adults. Future work is
needed to determine if rare or protective alleles confer a healthy metabolic phenotype in this
subset of LLFS families with exceptional metabolism.
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1. Introduction

Genetic variants in metabolic pathways have been documented to promote longevity in
model organisms [1]. For example, mutations in the pathway of insulin and insulin-like
growth factor-1 (IGF-1) signaling have shown to increase lifespan across multiple species
[2]. Since decreased insulin and IGF-1 signaling can increase longevity, a healthy metabolic
profile of insulin sensitivity and healthy lipids could be an important intermediate phenotype
for exceptional longevity in humans. In accordance, long-lived individuals and their
offspring have healthier metabolic characteristics than expected for their age, such as more
favorable levels of fasting glucose, insulin, and lipids than controls without longevity [1,3—
5].

A variety of mechanisms contribute to insulin signaling pathway abnormalities and insulin
resistance [6], as well as to metabolism as a whole. For example, inflammation and
abdominal obesity also characterize age-related changes that impact metabolism [6].
Inflammation, in particular, is one of the few common risk factors for multiple major causes
of death among community-dwelling older adults [7]. Inflammation negatively impacts
insulin signaling [6], where the control of systemic inflammation has been proposed as a
way to promote longevity [8]. Identifying individuals who are relatively robust to metabolic
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alterations occurring with aging may provide insights into novel factors influencing healthy
aging and longevity.

The Long Life Family Study (LLFS) is a multicenter cohort of two-generation families who
were selected because they had a clustering of family members with exceptional longevity.
Similar to other longevity-related cohorts, participants in the LLFS offspring generation had
healthier metabolic characteristics than offspring from the Framingham Heart Study [9]. In
this report, we determined whether a subset of participants in the LLFS offspring generation
had a healthy metabolic profile based on fasting glucose and insulin, lipids, body
composition, and inflammation, with the goal of determining whether a subset of LLFS
families had a clustering of individuals with a healthy metabolic profile and whether this
was associated with other metrics of healthy aging, including chronic conditions and
physical and cognitive function.

2. Methods
2.1 The Long Life Family Study (LLFS)

The LLFS is an international multicenter cohort of two-generation families with a clustering
of longevity, designed to examine genetic, environmental, and behavioral determinants of
exceptional survival. Families were recruited during 2006-2009 from Boston,
Massachusetts; New York, New York; Pittsburgh, Pennsylvania; and Denmark. Families
were primarily white and met the following eligibility criteria: 1) enrolled one long-lived
participant (proband) aged =90, 2) enrolled =1 sibling of the proband, 3) enrolled =1
offspring of either the proband or the proband’s sibling, and 4) the proband generation had a
clustering of members with exceptional survival based on a family longevity selection score
[10]. The two generations in the LLFS were labeled as the proband generation (long-lived
individual and their enrolled siblings) and the offspring generation (all enrolled offspring of
individuals in the proband generation). The LLFS also recruited as many spouses as
possible. The LLFS protocol was approved by the Human Research Protection office of the
coordinating center at Washington University, the Regional Scientific Ethical Committees
for Southern Denmark, and the Institutional Review Boards at Boston University, Columbia
University, and the University of Pittsburgh.

Fig. 1 illustrates the process of coming to the final analytic sample used to develop the
healthy metabolic phenotype. Among the participants in the offspring generation, 303 were
excluded from the current analysis because they were missing more than three of the eight
markers used to develop the healthy metabolic phenotype. Among the remaining 2132
offspring, 77 (4%) were taking medication for diabetes. The 2055 offspring not taking
medication for diabetes served as the study sub-sample for developing the individual-level
healthy metabolic phenotype. Of these, 1763 (86%) had complete information on all eight
metabolic markers and 292 (14%) were missing one to three metabolic markers. Available
information on the eight metabolic markers, age, and gender were used to replace missing
values using Monte Carlo Markov Chain multiple imputation [11]. Families included in the
analysis had to have at least two offspring with information on the individual-level healthy
metabolic phenotype. Thus, our final analytic sample size was 388 families that comprised
1093 probands and 1987 offspring.
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2.2 Healthy metabolic phenotype

We developed the healthy metabolic phenotype using fasting levels of glucose, insulin,
triglycerides, and high-density lipoprotein cholesterol, body mass index, waist
circumference, interleukin-6, and high-sensitivity C-reactive protein. We considered markers
that characterized metabolic changes that occur with aging [6]. In addition, favorable levels
of these metabolic markers have been associated with longevity [1,3-5,7,9], and have the
potential to identify a unique subset of individuals who are resistant to developing metabolic
abnormalities. We also considered systolic blood pressure and adiponectin as potential
components of the phenotype, but they did not help differentiate latent subgroups.

To account for the wide age range (30 to 88 years old) in the offspring generation and gender
differences in metabolic traits, we calculated age- and gender-adjusted z-scores for the eight
metabolic traits relative to the whole LLFS offspring generation. Participants who were
taking medication for diabetes were excluded when calculating z-scores of fasting glucose
and insulin, but were still included when calculating z-scores for the other markers. For each
of the eight metabolic markers, z-scores were calculated using information from linear
regression models of the respective marker on age, while stratifying by gender, which
provided standardized values describing how each participant’s metabolic measurements
deviated from what was expected for their age and gender. Triglycerides, insulin,
interleukin-6, and high-sensitivity C-reactive protein were log-transformed prior to analysis.

2.2.1 Latent Profile Analysis—We applied a Latent Profile Analysis to identify a
subset of participants in the offspring generation who had a healthy profile of metabolic
characteristics. Latent Profile Analysis is a clustering technique that classifies participants
into subgroups based on similar patterns of multiple continuous measurements. We used
Mclust [12] to apply the Latent Profile Analysis to the eight metabolic z-scores among
offspring who were not taking medication for diabetes. Model selection was performed to
determine the optimal number of subgroups using the Bayesian Information Criterion [13]
and the following a priori criteria: 1) at least 0.80 mean posterior probability of correctly
classifying participants into subgroups and 2) at least 5% of participants classified into each
subgroup. We did not solely use the Bayesian Information Criterion because it is known to
be problematic in mixture modeling since it can continue to improve as the number of latent
subgroups increase, suggesting an unreasonable number of groups [14,15]. Others have
suggested using subjective criteria in addition to the Bayesian Information Criterion and
recommend balancing parsimony with distinctness so that there are no more subgroups than
what is necessary [14]. Models with more than 4 groups had at least one subgroup with <5%
of participants and/or at least one subgroup with an average subgroup posterior probability
<0.80. Among the two-, three-, and four-group models, the four-group model was most
optimal according to the Bayesian Information Criterion.

The Latent Profile Analysis methodology does not accommodate multiple imputations for
missing values. For this initial subgroup classification phase, we opted to use the average of
five Monte Carlo Markov Chain imputations to replace a missing measurement for the
respective metabolic marker among the 292 (14%) participants who were missing one to
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three of the eight metabolic markers. This average estimates the mean of the posterior
distribution [11].

2.2.2 Individual-level healthy metabolic phenotype—We classified offspring as
meeting the individual-level healthy metabolic phenotype if the Latent Profile Analysis
classified them into a subgroup with a healthy profile of metabolic characteristics,
represented by higher than expected high-density lipoprotein cholesterol and lower than
expected values for the other seven metabolic markers than participants of the same age and
gender. Offspring taking medication for diabetes were not included in the Latent Profile
Analysis and, instead, automatically classified as not meeting the healthy metabolic
phenotype.

2.2.3 Family-level healthy metabolic phenotype—Similar to a previously
developed healthy blood pressure phenotype in the LLFS [16], we classified families as
meeting the healthy metabolic phenotype if 22 and =50% of their offspring met the
individual-level healthy metabolic phenotype. That is, families were classified as
metabolically healthy if the majority of their offspring had a profile of healthy metabolic
characteristics.

2.3 Examination

Sociodemographic factors, including date of birth, gender, race, and education, smoking
status, difficulty with activities of daily living, health status, and chronic conditions were
determined by interview, as well as a blood sample was collected, in the participant’s home
near the time of enrollment (2006—2009). History or presence of heart disease, stroke,
cancer, emphysema, and chronic obstructive pulmonary disease was based on self-report of a
physician’s diagnosis. Hypertension was defined as systolic and diastolic blood pressure
>140/90 mmHg or taking anti-hypertensive medication. Diabetes was defined as fasting
glucose =126 mg/dL or taking diabetes-related medication. All prescription and non-
prescription medications were examined in their original containers for a medication
inventory.

Information on weight, waist circumference, systolic and diastolic blood pressure, and
performance measures was collected. Lung function was measured by forced expiratory
volume in one second using EasyOne spirometers. Grip strength was the average of two
measurements using the Jamar Hydraulic Hand Dynamometer on the stronger hand. Gait
speed was averaged over 4 m, or 3 m if a 4 m space was not available. The short physical
performance battery was based on gait speed, three balance tests, and repeated chair stands
[17]. Overall cognitive performance was assessed using the digit symbol substitution task
[18], the mini-mental state examination [19], and a cognitive endophenotype based on
semantic fluency, digit forward and backward, and immediate and delayed recall [20].
Semantic fluency was the sum of animals and vegetables fluency, measuring the time it took
to name as many animals or vegetables, respectively, as possible in 60 s [21]. Overall
memory was the sum of how well participants could recall a short passage both immediately
and 30 min after hearing it [22]. Attention/working memory was the sum of digit span
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forward and backward, which tested participants’ ability to repeat a sequence of numbers,
increasing in difficulty, both forward and backward, respectively [22].

Blood-based biomarkers were measured by a central laboratory at the University of
Minnesota. Participants were asked to fast for at least eight hours prior to the blood draw,
though phlebotomy was performed regardless of fasting time. For the current analysis,
measurements of glucose, insulin, triglycerides, and cholesterol were only used if
participants fasted for =8 h. There were 273 offspring who fasted for <8 h. Among
participants without diabetes who were missing fasting glucose but had information on
glycated hemoglobin, fasting glucose was estimated using the following equation [23]:
28.7*HbAlc - 46.7, and then multiplied by the mean observed fasting glucose levels divided
by the mean estimated fasting glucose. Interleukin-6, high-sensitivity C-reactive protein,
creatinine, and insulin-like growth factor-1 were also measured in the blood.

The metabolic syndrome was examined as a way to validate our healthy metabolic
phenotype, since it was expected that participants who met the healthy metabolic phenotype
would have a much lower likelihood of the metabolic syndrome. The metabolic syndrome
was defined based on the 2009 Joint Interim Statement of the International Diabetes
Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood
Institute; American Heart Association; World Heart Federation; International
Atherosclerosis Society; and International Association for the Study of Obesity [24], as
meeting at least three of the following five criteria: elevated waist circumference (=102 cm
for men, =88 cm for women), elevated triglycerides (=150 mg/dL), low high-density
lipoprotein cholesterol (<40 mg/dL for men, <50 mg/dL for women), elevated blood
pressure (systolic = 130 mmHg, diastolic = 85 mmHg, or taking anti-hypertensive
medication), and elevated fasting glucose (=100 mg/dL or taking medication for diabetes).
Insulin resistance was quantified using the homeostatic model assessment [25]:
(glucosemg/gL *insulingg/qi )/405.

2.4 Statistical analysis

Mean (standard deviation) or frequency (percent) was used to describe differences among
offspring who met the individual-level healthy metabolic phenotype versus offspring who
did not. Effect sizes were examined using Cohen’s d for continuous measures and phi
coefficient for categorical measures. Differences were tested using generalized estimating
equations in SAS 9.4, adjusting for relatedness of individuals. Differences were also tested
while additionally adjusting for age and gender for all measures except cognitive
performance, which additionally adjusted for age and education. A Benjamini-Hochberg
correction was used to account for multiple comparisons [26] with a 10% false discovery
rate. Distributions were assessed for normality and transformations were applied as needed.
For comparison, we examined the percentage who met the individual-level healthy
metabolic phenotype among the offspring versus the offspring-generation spousal controls.
The same descriptive statistics and tests were performed when comparing offspring and
probands from families who met the healthy metabolic phenotype versus offspring and
probands, respectively, from remaining families.
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The log odds of being classified into the latent subgroup with a healthy metabolic profile
was calculated for both generations, separately, using logistic regression models of an
indicator for the latent subgroup with a healthy metabolic profile on the age- and gender-
adjusted z-scores of the eight metabolic markers. Heritability of the log odds of being
classified into the latent subgroup with a healthy metabolic profile was determined using a
variance component-based family analysis adjusting for field center and significant
population principal components in SOLAR.

3. Results

Fig. 2 illustrates the average age- and gender-adjusted z-scores for the eight metabolic
markers by the four latent subgroups, where each group was characterized by a different
metabolic profile. Group four (20% of offspring) had the healthiest profile of metabolic
characteristics. All metabolic markers were at least 0.4 standard deviations better, on
average, than the overall age- and gender-specific sample means. Fasting insulin and high-
density lipoprotein cholesterol were the most extreme; both were more than one standard
deviation better, on average, than the overall age- and gender-specific sample mean. Group
three was the largest subgroup and had a metabolic profile that was closest to the overall
age- and gender-specific sample averages. The remaining two groups had unhealthy profiles
with similar average adjusted z-scores for body mass index, waist circumference, and fasting
glucose, but group one was characterized by high inflammation-related biomarkers and
group two was characterized by worse insulin, triglycerides, and high-density lipoprotein
cholesterol.

3.1 Healthy metabolic phenotype

Among 1987 offspring, 388 (20%) met the individual-level healthy metabolic phenotype
because they were classified into the latent subgroup with a healthy profile of metabolic
characteristics and 72 (4%) offspring were automatically classified as not meeting the
individual-level healthy metabolic phenotype because they were taking medication for
diabetes. The log odds of being classified into the latent subgroup with a healthy metabolic
profile was heritable (h? = 0.40, p< 0.001). Only 11% of offspring-generation spousal
controls met the individual-level healthy metabolic phenotype. Among the 388 families, 39
(10%) met the family-level healthy metabolic phenotype because =2 and =50% of their
offspring met the individual-level healthy metabolic phenotype.

3.2 Individual-level healthy metabolic phenotype comparison

Table 1a—1d compares offspring who met the individual-level healthy metabolic phenotype
versus remaining offspring. More offspring were from New York, whereas fewer were from
Pittsburgh among those who met the healthy metabolic phenotype (Table 1a). Fewer
offspring who met the healthy metabolic phenotype were current smokers and fewer
reported heart disease, hypertension, and difficulty with =1 activity of daily living than
remaining offspring (Table 1b). Offspring with the healthy metabolic phenotype also had a
lower average systolic and diastolic blood pressure and low-density lipoprotein cholesterol,
and a slightly higher average forced expiratory volume in 1 s and slightly lower average
creatinine and insulin-like growth factor-1 than remaining offspring (Table 1b). Offspring
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who met the healthy metabolic phenotype also had a slightly better average gait speed and
short physical performance battery score, as well as a better average cognitive
endophenotype (Table 1d).

3.3 Family-level healthy metabolic phenotype comparison

Table 2a—2d compares offspring and probands from families who met the family-level
healthy metabolic phenotype versus offspring and probands, respectively, from remaining
families. Fewer offspring from families with healthy metabolism were from Denmark and
Pittsburgh and more were from Boston and New York, as well as more had greater than a
high school education than offspring from remaining families (Table 2a). Offspring from
families with healthy metabolism also had lower average systolic and diastolic blood
pressure, and low-density lipoprotein cholesterol (Table 2b). Fewer offspring from families
with healthy metabolism had heart disease and hypertension and fewer were taking lipid-
lowering medication and anti-hypertensive medication, though, more had a history or
presence of cancer than offspring from remaining families (Table 2b). Offspring from
families with healthy metabolism also performed better on the digit symbol substitution task,
the cognitive endophenotype, attention/working memory, and the short physical performance
battery than offspring from remaining families (Table 2d).

Similar to the offspring generation, fewer probands from families with healthy metabolism
were from Denmark and more were from New York, as well as more had greater than a high
school education than probands from remaining families (Table 2a). Probands from families
with healthy metabolism had a better average forced expiratory volume in one second and
fewer had chronic obstructive pulmonary disease or emphysema (Table 2b). Consistent with
the definition of our phenotype, probands from families with healthy metabolism also had a
better average fasting insulin, triglycerides, high-density lipoprotein cholesterol, and high
sensitivity C-reactive protein (Table 2c¢). Also, fewer probands had the metabolic syndrome
among families with healthy metabolism. Probands from families with healthy metabolism
had a faster average gait speed and better average short physical performance battery score,
as well as performed better, on average, on the digit symbol substitution task than probands
from remaining families (Table 2d). As a sensitivity analysis, we included individuals who
had non-fasting measures for high-density lipoprotein cholesterol and triglycerides and
results did not differ substantively from the primary analysis.

4. Discussion

In the LLFS, we identified a subset of families (10%) who had a clustering of offspring with
a healthier profile of metabolic characteristics than expected given age and gender relative to
all offspring in the cohort. Among these families, the offspring had somewhat better
cognitive performance than offspring from families who did not meet the healthy metabolic
phenotype. When examining participants from the proband generation, those from families
who met the healthy metabolic phenotype had better pulmonary functioning, physical
performance, and cognitive performance than those from remaining families.

Similar to the healthy blood pressure phenotype and the healthy memory phenotype
developed in LLFS [16,27], few families (10%) had a clustering of offspring with a healthy
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metabolic profile. This is partly because the healthy phenotypes were developed based on
health relative to the whole LLFS offspring generation, a cohort of individuals selected for
exceptional familial longevity. In addition, offspring taking medication for diabetes were not
included in the Latent Profile Analysis and instead were automatically classified as not
meeting the individual-level healthy metabolic phenotype. Because of this, the Latent Profile
Analysis identified a subset of offspring who had a profile of healthy markers relative to a
total group of offspring who were healthy enough to not be taking medication for diabetes or
who had not yet been prescribed medication for diabetes. We deliberately chose to take this
approach so that we could identify especially unusual families within the LLFS cohort for
deeper molecular characterization. There is likely a genetic component contributing to
metabolic health among families enriched with both longevity and healthy metabolism since
all nine of the hallmarks of aging have been linked to metabolic perturbations [28]. In
addition, current interventions (e.g., caloric restriction) that extend lifespan across a variety
of species do so by enhancing metabolic fitness. Healthy metabolism was heritable in the
LLFS cohort, with a heritability of 0.40 for the log odds of being classified as having a
profile of healthy metabolic characteristics. It remains to be seen whether there are rare
variants segregating with metabolic fitness in this extreme subset of LLFS families.

Our approach to defining a healthy metabolic phenotype identified a subset of LLFS families
with a clustering of offspring members who were metabolically healthy. By defining
families using the offspring generation, we validated the phenotype with the finding that it
was also expressed in the proband generation. Probands from families who met the healthy
metabolic phenotype had lower averages of fasting insulin, triglycerides, and high-sensitivity
C-reactive protein and higher average high-density lipoprotein cholesterol than probands
from remaining families. Among families defined as having a healthy metabolic phenotype,
25% of probands and 64% of offspring were classified as having a healthy metabolic profile,
whereas among families who did not meet the healthy metabolic phenotype, 18% of
probands and 16% of offspring had a healthy metabolic profile. This illustrates the
concordance of healthy metabolism across generations, but also the low prevalence of
healthy metabolism at advanced old age. In addition to the markers used to develop the
healthy metabolic phenotype, we found more optimal values for cardio-metabolic risk
factors, such as lower systolic and diastolic blood pressure and low-density lipoprotein
cholesterol, as well as a lower proportion with heart disease, hypertension, and taking lipid-
lowering or anti-hypertensive medications among offspring from families with the healthy
metabolic phenotype versus offspring from remaining families.

Overall, the prevalence of metabolic syndrome among all LLFS probands (age range: 71—
110) was 26%, which was much lower than the U.S. prevalence. Among Americans aged
=70, 62% and 58% of non-Hispanic white women and men, respectively, have the metabolic
syndrome [29]. This further supports that the LLFS participants were healthier than the U.S.
population. In addition, when examining the subset of probands from families who met the
healthy metabolic phenotype, the prevalence of metabolic syndrome was only 12%,
providing more evidence that our healthy metabolic phenotype successfully identified a
subset of LLFS families with a clustering of probands, in addition to offspring, with
metabolic health.
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Both offspring and probands from families who met the healthy metabolic phenotype
performed somewhat better on the digit symbol substitution test, a measure of information
processing speed, working memory, and visuospatial scanning. Consistent with other
studies, metabolism plays an important role in brain health, though does not necessarily
explain dementia risk among older adults [30,31]. Two common pathological mechanisms
potentially leading to both diabetes and cognitive dysfunction is insulin resistance, by
disrupting insulin transport across the blood-brain barrier [32], and inflammation.
Metabolic-related interventions shown to increase lifespan, such as administering rapamycin
or intermittent fasting, improved cognitive performance and lowered inflammation in mice
[28,33]. In community-dwelling older adults, the metabolic syndrome only predicted
cognitive impairment in those with high inflammation [34]. Inflammation has also been
linked to lung disease [35], where LLFS probands from families who met the healthy
metabolic phenotype also had better pulmonary functioning.

Participants in the proband generation from families who met the healthy metabolic
phenotype also had better cognitive, physical, and lung function. Probands from families
with versus without the healthy metabolic phenotype had a clinically meaningful difference
in gait speed and the short physical performance battery, a measure of lower extremity
function [36]. Both physical and cognitive performance measures are among the best
predictors of mortality for older adults [37] and can best illustrate older adults’ overall health
[38]. In addition, pulmonary dysfunction has shown to be a risk factor for multiple causes of
death among older adults [7]. The better average cognitive and physical performance and
lung function among probands from families who met the healthy metabolic phenotype may
indicate that members of these families have a greater likelihood of surviving to later ages,
or in other words these families have a more extreme familial longevity than probands from
remaining families.

When examining offspring from families who met the healthy metabolic phenotype versus
offspring from remaining families, there were minimal differences in physical performance
measures, unlike what was observed in the proband generation. This is likely because of the
younger average age among the offspring generation (mean age: 60) when compared to the
proband generation (mean age: 90), where poor physical performance is more likely to
manifest at later ages. For example, a significant decline in gait speed typically does not
occur until around the sixth decade of life [39], thus, more striking differences in physical
performance among offspring from families who met the healthy metabolic phenotype
versus offspring from remaining families may not be apparent until later follow-up visits.

Though focused on distinguishing types of metabolic dysregulation, rather than health, a
cluster analysis in the Cardiovascular Health Study (CHS) found varying degrees of insulin
resistance and impaired insulin secretion [40]. Interestingly, their reference healthy group
was similar to what we found with lower average values of fasting glucose and insulin, body
mass index, and C-reactive protein than the remaining cohort. The prevalence of their
healthy reference group was higher than what we found in the LLFS (33% vs. 20%,
respectively); likely because the LLFS healthy group consisted of a more extreme set of
individuals with values for metabolic markers that were even lower than the CHS healthy
reference group. Prospectively, the CHS reference group had lower risks of incident
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diabetes, cardiovascular disease, disability, mobility limitation, and mortality than almost all
other groups. The low rate of adverse health outcomes among their healthy reference group
supports the importance of healthy metabolism as a healthy aging phenotype and the
potential that our healthy metabolic phenotype can identify a subset of LLFS families with a
greater likelihood of surviving to advanced age, which may be due to rare genetic variants in
this pathway.

A larger percentage of offspring presented with a history of cancer among families with the
healthy metabolic phenotype, though the absolute difference between the two groups was
minimal. It should be noted a small number of offspring (1%) had very high high-density
lipoprotein cholesterol, which has been paradoxically associated with high mortality [41],
but excluding these individuals in sensitivity analyses did not influence results. A limitation
of this report was its cross-sectional design, which does not allow for assessing temporality
between the healthy metabolic phenotype and its correlates. However, future longitudinal
analyses on these families will have the potential to overcome this. Other potential
limitations were the mostly white cohort, which limits the generalizability of results, as well
as families with one offspring in the study were excluded since we were unable to determine
if the majority of their offspring were metabolically healthy when there is information on
only one individual. Our study has several important strengths, including the well-
characterized and novel cohort of families enriched for longevity allowing us to examine
several correlates of metabolic health, as well as the home visits allowing data collection on
as many participants from families as possible, including those who may have not been
healthy enough to leave their home.

5. Conclusions

We have demonstrated that families with clustering of especially healthy metabolism can be
identified within families enriched for longevity from the Long Life Family Study. Future
research is needed to determine if rare or protective alleles contribute to a healthy metabolic
phenotype in the LLFS families.
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2435 offspring from 562 families

missing 23 of the 8

Excluded 303 offspring l
metabolic markers

2132 offspring from 533 families

Excluded 77 offspring taking
medication for diabetes from
Latent Profile Analysis

2055 offspring from 528 families
were used to apply Latent Profile Analysis
to age- and gender-adjusted z-scores of
eight metabolic markers

\l/ Added back in 77 offspring

taking medication for diabetes
after Latent Profile Analysis

2132 offspring from 533 families

Excluded 145 families with
information on only one offspring

1987 offspring from 388 families
were used to examine differences
associated with the healthy metabolic
phenotype

Fig. 1.
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Flowchart of LLFS participants from the offspring generation involved in developing the

healthy metabolic phenotype.
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Fig. 2.

Mean age- and gender-adjusted z-scores of the eight metabolic markers by four latent
subgroups among n = 1915 participants in the offspring generation who were not taking
medication for diabetes (lower z-scores indicate healthier values) *Log transformation
applied prior to computing z-scores **HDL cholesterol z-scores were multiplied by -1
Twenty percent of participants in the offspring generation were classified into a subgroup
with a higher average value for high-density lipoprotein cholesterol and lower average
values for body mass index, waist circumference, fasting glucose, fasting insulin,
triglycerides, interleukin-6, and high-sensitivity C-reactive protein than the overall sample
mean.
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