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Abstract

Importance—The present study identified potential genetic modifiers that may delay or
accelerate age at onset of familial Alzheimer disease (AD) by examining age at onset in PSEN1
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mutation carrier families, and further investigation of these modifiers may provide insight into the
pathobiology of AD and potential therapeutic measures.

Objective—To identify genetic variants that modify age at onset of AD.

Design, Setting, And Participants—Using a subset of Caribbean Hispanic families that carry
the PSENI p.G206A mutation, we performed a 2-stage genome study. The mutation carrier
families from an ongoing genetic study served as a discovery set, and the cohort of those with
LOAD served as a confirmation set. To identify candidate loci, we performed linkage analysis
using 5 p.G206A carrier families (n = 56), and we also performed whole-exome association
analysis using 31 p.G206A carriers from 26 families. To confirm the genetic modifiers identified
from the p.G206A carrier families, we analyzed the GWAS data for 2888 elderly individuals with
LOAD. All study participants were Caribbean Hispanics.

Main Outcomes and Measures—Age at onset of AD.

Results—Linkage analysis of AD identified the strongest linkage support at 4935 (LOD
[logarithm of odds] score, 3.69), and the GWAS of age at onset identified variants on 1p13.1,
2013, 425, and 17p11. In the confirmation stage, genewise analysis identified SNX25, PDLIMS3,
and 3 SH3 domain genes (SORBSZ, SH3RF3, and NPHPI) to be significantly associated with
LOAD. Subsequent allelic association analysis confirmed SNX25, PDLIM3, and SORBSZ2 as
genetic modifiers of age at onset of EOAD and LOAD and provided modest support for SH3RF3
and NPHPL.

Conclusions and Relevance—Our 2-stage analysis revealed that SNX25, PDLIM3, and
SORBS2 may serve as genetic modifiers of age at onset in both EOAD and LOAD.

In 2001, we identified a p. Gly206A/a (9.44636G>C) variant in PSENI (OMIM 104311) in
members of 8 Caribbean Hispanic families with early-onset Alzheimer disease (EOAD)
from Puerto Rico.! Subsequently, Arnold and colleagues? also reported this mutation in
additional individuals from Puerto Rico but not in other ethnic groups. The mean age at
onset among mutation carriers was 55.6 years but was highly variable within families,
ranging from 22 to 77 years. The presence of neither an APOE e4 allele nor any antecedent
environmental, health-related, or social factors could explain the differences in the age at
onset among mutation carriers, leading us to suspect that other genes were involved in
determining when, but not whether, p.G206A carriers develop AD.

Late-onset diseases, including AD,3# Huntington disease,> and Parkinson disease,8 have
been studied for genetic modifiers of age at onset in the presence of a major genetic risk
factor (ie, pathogenic mutation), recognizing that there are likely genetic variants that
contribute to phenotypic expression. Few studies'911 have reported gene-gene interaction in
AD because different individuals are likely to carry different genetic risk factors. Since there
are approximately 185 known PSENI variants associated with AD and these variants are
rare, most studies will not have sufficient statistical power.12

We conducted a 2-stage study on a set of families multiply affected by AD with at least one
carrier of the p.G206A variant in the PSENI gene to identify genetic modifiers of age at
onset among carriers. In the discovery stage, we used these genetically homogeneous
families in which nearly all carriers of the PSENI mutation had p.G206A. Using a subset of
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carrier family members, we applied both genome-wide linkage and exome sequencing
analyses (eFigure 1 in the Supplement). In the confirmation stage, we examined allelic
association between age at onset and variants in the same candidate genes in a cohort of the
same ancestry with late-onset AD (LOAD). We report that variants in SNX25, PDLIM3,
SORBSZ, and SH3RF3were associated with variation in age at onset in families with a copy
of PSENI p.G206A mutation and in LOAD. In addition, at least one variant in NPHPI was
associated with variation in age at onset of AD.

Discovery Cohort

We conducted a 2-stage study to identify genetic modifiers of age at onset of AD using
multiple sets of data in which some were family based and others comprised unrelated
individuals (eFigure 1 in the Supplement). The study protocol was approved by the
Columbia University Institutional Review Board, and written informed consent was
provided by all the participants. Using 56 family members from 5 families with EOAD with
the PSEN1 p.G206A mutation, we performed linkage analysis to identify candidate loci.
These families represent a subset of PSENI carrier families with a wide range of age at
onset among affected individuals. Family members resided in the United States, Puerto Rico,
Dominican Republic, and countries in South America. Although these families were selected
because multiple members had EOAD (age at onset, <65 years), many of these families had
some family members who had LOAD (age at onset, >65 years). In addition, we performed
an exome sequencing experiment and found 31 carriers from 26 families who had multiple
affected members and at least 2 who had the PSENI p.G206A mutation. Nine of the 31
individuals were also included in the linkage analysis. Given the small sample size of carrier
families examined, the main goal of this discovery stage is to prioritize candidate loci.13

Confirmation Cohort

For the LOAD validation experiment, we examined 2888 Caribbean Hispanic elderly people
who were noncarriers of the PSENI p.G206A mutation and were included in separate
genome-wide association studies (GWAS) (eTable 1 in the Supplement).

Genetic Analysis

All persons were genotyped using the 6K Illumina linkage panel single-nucleotide
polymorphism (SNP) chips (Illumina Inc). This SNP chip was designed to obtain
information for linkage signals. Before analysis, we conducted the standard quality control
checks, including checking of the reported family relationships using the software PREST,14
Hardy-Weinberg equilibrium, and genotyping rate. The details of the quality control
procedures are presented elsewhere.15.16

Genome-wide Linkage Analysis

To identify regions that may contain variants that could modify age at onset, linkage
analyses were performed using the 6K linkage panel SNP data from 56 individuals in 5
families. We examined AD and age at onset as phenotypes. We reasoned that variants that
lead to early age at onset are likely to increase the risk of AD, whereas variants that delay
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age at onset may reduce the risk. For AD phenotype, single-point analysis assumed an
autosomal dominant mode of inheritance and used the affecteds-only approach 17 in
PSEUDOMARKER.18 For age-at-onset phenotype, we used age at onset for affected
individuals and age at last examination for unaffected individuals. We then applied the
multipoint variance component method to identify candidate loci as implemented in SOLAR
statistical software.1® This variance component model was adjusted for sex, APOE e4, and
AD status.

To prioritize candidate genes under the linkage peak at 4935.1, the top linkage peak, we
screened candidate genes using CANDID, version 1.1.20 Higher weights were given to
logarithm of odds (LOD) score (weight, 2) and conservation (weight, 2) compared with
literature (which included the keywords A/lzheimer disease, neurodegeneration, early onset,
and beta amyloid) (weight, 1) and gene expression (weight, 1).

Exome Sequencing

Whole-exome capture libraries were constructed from DNA from whole blood of the
samples after sample shearing, end repair, phosphorylation, and ligation to bar-coded
sequencing adaptors (eFigure 2 in the Supplement). The ligated DNA was subjected to
exonic hybrid capture using the Nimble exome capture array (http://www.nimblegen.com/
seqcapez/). Samples were multiplexed and sequenced on multiple Illumina HiSeq flow cells
for a mean target exome coverage of 80x to generate paired-end reads of 90 base pairs.

Read Mapping, Variant Calling, and Downstream Bioinformatics Analyses

Prealignment quality control of the read data to identify failed runs and lanes was performed
using the R BioConductor package: ShortRead (http://www.bioconductor.org/). Sequence
alignment was performed using the aligner BWA. Polymerase chain reaction duplicates
(reads) were removed using Picard tools. Base quality recalibration and realignment around
indels were performed using the Genome Analysis Toolkit (https://www.broadinstitute.org/
gatk/). Multisample variant calling and quality control of the call were then performed using
the Genome Analysis Toolkit. On the basis of the hypothesis that the mutation underlying
this rarer form of EOAD was not present in the general population, SNPs identified in the
1000 Human Genomes (HG) project (version 2010-11; http://www.1000genomes.org) or in
dbSNP (build 134; http://www.ncbi.nlm.nih.gov/projects/SNP) were removed. Exonic
coding variants were identified and annotated by ANNOVAR (http://
annovar.openbioinformatics.org/en/latest/). Non-exonic and synonymous variants were
filtered from the variant list using predictions from SIFT (Sorting Intolerant From Tolerant)
software, version 4.0 (http://sift.jcvi.org).

Genome-wide Association Analysis

Using 31 individuals with exome sequencing data, we examined candidate genes under the
top linkage peak and the rest of the exome by applying a mixed linear model adjusting for
sex, APOE genotype, affection status, and kinship coefficient. The kinship coefficient matrix
using the R functions?! was included in the model to take into account relatedness among
family members.
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Replication Using the LOAD Hispanic GWAS Data Set: Genewise Analysis

To determine whether candidate genes identified from the EOAD cohort were similarly
associated with age at onset of AD in the LOAD cohort of the same ethnic background, we
performed gene wise association analysis using family-based SKAT software
(FAMSKAT),22 adjusting for sex, AD status, and APOE e4. This approach was necessary
because (1) multiple variants within one gene had modest effects on age at onset and (2)
most of the variants identified from exome sequencing were absent in the GWAS data of
Caribbean Hispanics.

Imputation of the LOAD Hispanic GWAS Data Set

Imputations of 5 genes (SNX25, PDLIM3, SORBSZ2, SH3RF3, NPHPI) were performed
based on cosmopolitan phased haplotypes of 1000 HG, version 2010-11 (data freeze,
2012-03-04 haplotypes; http://csg.sph.umich.edu//abecasis/MaCH/download/1000G.
2012-03-14.html). PLINK, version 1.07 (http://pngu.mgh.harvard.edu/~purcell/plink/) was
used for imputation. Before imputing, a number of filters were implemented in the Hispanic
GWAS genotypic data by removing markers that had a minor allele frequency less than 1%,
a Hardy-Weinberg equilibrium £<1078, Hispanic GWAS SNP alleles mismatched with
those of 1000 HG project and not present in the 1000 HG panel, and flipping of any SNP
when appropriate to the forward strand. A total of 348 924 SNPs for 2 regions of
chromosome 2 (175 288 SNPs, approximately 14 Mbp) and chromosome 4 (173 636 SNPs,
approximately 10 Mbp) were imputed. For single-variant and single-trait association with
imputed genotypes, 2 additional filters were implemented: minor allele frequency greater
than 1% and an information score greater than 0.8 (a quality score from the imputation),
which reduced the analysis to 2636 variants within the 3 genes.

Association Analysis and Meta-analysis

Results

We applied the same multivariate linear mixed model that adjusted for sex, AD status, and
APOE 421 as above to test the allelic association between age at onset and variants in
LOAD. We then conducted a meta-analysis to assess whether the SNPs in the 3 candidate
genes were significantly associated with the LOAD GWAS data sets. For this purpose, we
estimated the meta-analysis of Pvalues from 4 studies as implemented in the METAL
(http://csg.sph.umich.edu//abecasis/metal/), which estimates a single summary Pvalue
across 3 data sets. An overall zstatistic and P value were calculated while taking into
account the number of individuals examined in each study.

Study Participants

Table 1 details the 3 sets of Caribbean Hispanics investigated: (1) families who have
multiple affected members and at least one carrying the PSENI p.G206A mutation were
analyzed using linkage analysis; (2) carriers of the PSENI p.G206A mutation from families
who have multiple affected members were analyzed using exome sequencing; and (3) 3
confirmatory GWAS data sets of Caribbean Hispanics primarily composed of LOAD were
studied, 1523 which were analyzed using a linear mixed model to assess allelic association.

JAMA Neurol. Author manuscript; available in PMC 2016 September 03.


http://csg.sph.umich.edu//abecasis/MaCH/download/1000G.2012-03-14.html
http://csg.sph.umich.edu//abecasis/MaCH/download/1000G.2012-03-14.html
http://pngu.mgh.harvard.edu/~purcell/plink/
http://csg.sph.umich.edu//abecasis/metal/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Leeetal. Page 6

All 3 data sets had both family members and unrelated individuals, and appropriate
statistical methods were applied to account for nonindependence.

Linkage Analysis Set—Of 56 family members included in the linkage analysis, 21
(37.5%) were affected, and 32 (57.1%) were unaffected. A total of 37 (66.1%) of the family
members were women, the mean (SD) age at onset of AD was 57.2 (7.0) years (range,
43.0-73.0 years), and the mean educational level was 10.0 years. The overall allele
frequency of APOE e4 was 20.5%.

Exome Sequencing Set—Of 31 PSENI p.G206A mutation carriers from 26 families
who were included in the exome sequencing experiment, 26 (83.9%) of the mutation carriers
had been clinically diagnosed as having AD. The other persons were unaffected carriers.
Nineteen participants (61.3%) were women, the mean (SD) age was 57.9 (9.9) years (range,
44.0-77.0 years), and the mean educational level was 9.1 years. Most mutation carriers
reported Puerto Rico as the country of origin, whereas the others were from the Dominican
Republic.

Caribbean Hispanic GWAS Set—Among 2888 individuals in the confirmation set, 1473
(51.0%) of the individuals were affected with AD, and 1918 (66.4%) were women. Most
affected individuals had LOAD, and their mean age at onset was 74.0 years (range,
30.0-105.0 years). The proportion of APOE e4 carriers (23.0%) was comparable to those
with EOAD family members.

Genome-wide Linkage Analysis of Families Carrying the PSEN1 p.G206A Mutation

For the purpose of gene discovery, we conducted genome-wide linkage analyses of AD and
age at onset using 5 multiplex families with variable age at onset. The linkage analysis of
AD identified the strongest linkage support for rs13478 at 4935.1 (LOD score, 3.69), and 3
additional SNPs (rs1024026, rs1983503, rs2036912) from the 6K linkage panel were
suggestive (Figure). This locus included multiple genes in linkage disequilibrium, including
C4orf41, STOXZ2, MLF1IP, SORBSZ, and FAMI149A. Our subsequent informatics analysis
based on the CANDID algorithm?? identified 3 top candidate genes: SLC25A4, SORBS2,
and K/IAA1430. On the other hand, the linkage analysis of age at onset that adjusted for sex,
AD status, and APOE e4 did not identify any SNPs with suggestive or significant LOD
scores. An additional model that included the presence or absence of the PSEN1 p.G206A
variant in addition to sex, AD status, and APOE e4 yielded the highest LOD score of 0.75.

Targeted and Genome-wide Association Analysis of PSEN1 p.G206A Carriers

Using 31 PSENI p.G206Amutation carriers, we performed targeted association analysis
with the genes located under the linkage peak at 4g35.1. In addition, we performed genome-
wide association analysis of age at onset in the rest of the exome by applying a multivariate
linear mixed model that adjusted for sex, AD status, APOE ¢4, and kinship coefficient.2!
The linear mixed model was applied to take into account 5 individuals who were related to
others included in the exome sequencing experiment. Under the linkage peak, several SNPs
provided modest support for association with age at onset, but we focused on SORBS2
because of the strong support from the informatics analysis and the linkage analysis. The
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effect of the minor allele of rs13130022 in SORBSZ2 was associated with a delay in age at
onset by 11.1 years (see B coefficients in Table 2). In the remaining exome, the strongest
signal for age at onset was observed at rs906815 in NPHPI at 2q13 (P = 4.51x 1075).
Specifically, individuals carrying the rare A allele for rs906815 had an age at onset
approximately 11.7 years earlier for having one copy of the A allele compared with those
who do not, thereby leading to nearly a difference of 2 decades in age at onset (ie, 44 vs
64.17). In addition, the effect variants in SNX25and SH3RF3 were associated with a delay
in age at onset by 8.8 and 9.3 years, respectively, whereas the effect variant in PDL/M3 was
associated with an earlier onset by 12 years. In addition, rs696662 on 1p13.1 (P= 6.8 x
1076), rs906815 on 2q13 (P=4.5 x 1075), and rs3026115 on 17p13.2 (P = 7.8 x 107°) had
SNPs with strong support for allelic association.

To be conservative, we performed one additional analysis of age at onset of AD in which we
restricted the analysis to affected individuals only. This analysis yielded comparable results
as the survival analysis approach. For example, rs906815 in NPHP1 had a Pvalue of 4.13 x
1076, and other SNPs that were significant in the earlier analysis remained statistically
significant, but the Pvalues were somewhat weakened (eTable 2 in the Supplement).

Replication in Individuals With LOAD: Genewise Analysis

To determine whether the variants discovered from the PSENI p.G206A carrier families
were likely to be associated with variation in age at onset in LOAD, we first conducted
genewise association analysis using FAMSKAT?2 because the Hispanic GWAS data sets did
not include the variants identified from exome sequencing of the discovery set. We
confirmed that SNX25 (P=1.26 x 10719), PDLIM3(P=1.17 x 10711), SORBS2 (P = 3.8 x
1076), NPHPI (P=5.47 x 107°), and SH3RF3(P= 2.7 x 10711) were associated with age at
onset in Caribbean Hispanics with LOAD, further supporting that these genes may be
involved functionally in altering phenotypic expression in AD.

Replication in Individuals With LOAD: SNP-wise Analysis

To further explore whether allelic association persists within those candidate genes in
LOAD, we examined SNPs from the 3 GWAS data sets of Caribbean Hispanic ancestry,
focusing on the SNPs in the same linkage disequilibrium block as the original discovery
variants. Because the GWAS data sets did not have genotypes for many of the variants
discovered from exome sequencing, we performed imputation using PLINK?24 and then used
both genotype and imputed SNPs for allelic association. We limited the use of imputed
SNPs to those with an information score greater than 0.8 by PLINK analysis. As shown in
eFigure 3 in the Supplement, pairwise D’ values across the chromosomal regions
encompassing the discovery variants in candidate loci were high and were comparable
across the 3 GWAS data sets.

Table 3 indicates that multiple genotyped or imputed data in the candidate genes were
associated with age at onset in LOAD. In this confirmation analysis, 14 SNPs in SNX25
were associated with age at onset at < .05, and variants were associated with 1 to 6 years
of difference in age at onset in LOAD. For PDL/M3, 3 SNPs were associated with variation
in age at onset and were associated with a difference of 2.6 to 3.6 years in mean age at onset.
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For SORBSZ, 11 of 1246 SNPs or indels flanking the original discovery variant were
significantly associated with age at onset of LOAD at £< .05, and the variants were
associated with 1 to 4.6 years of mean age difference in onset. It is of interest to note that,
for SORBS2, the same allele was associated with age at onset in all 3 GWAS data sets, and
the allele frequency for the associated SNP was consistent across data sets, ranging from
0.032 to 0.222 with a median of 0.194. For SH3RF3, 5 SNPs were associated with age at
onset at £< .05 in LOAD, and the difference in mean age at onset ranged from 1 to 2.9
years. For NPHPI, only one SNP was associated with age at onset.

Table 4 summarizes reanalysis of the 10 SNPs from the 2 candidate genes (SORBS2 and
SH3RF3) using genotyped data. The rationale for genotyping these subsets of SNPs from
Table 3 was that the information score for the imputed SNPs in those 2 genes did not reach
the satisfactory quality control threshold of 0.8 according to our PLINK analysis; thus, the
results from the meta-analysis based on smaller data sets are likely to be less reliable when
compared with other SNPs with high information scores. When genotyped data were used,
rs72939527 in SH3RF3had the strongest support for allelic association (P=.007). The T
allele in rs72939527 was associated with a 2.7-year earlier age at onset compared with the
reference allele, whereas other variants did not reach statistical significance (P=.22-.47).

Discussion

We focused on founder mutation PSENI p.G206A with high penetrance to identify genetic
modifiers of age at onset of EOAD and LOAD and report that variants in SNX25, PDLIMS3,
SORBSZ, SH3RF3, and NPHP1 may contribute to variation in age at onset in EOAD and
LOAD. This study of a founder mutation allows identification of a second locus that may
alter the effect of the highly penetrant, nonsynonymous PSENI p.G206A variant. This
approach overcomes some of the limitations that are common in studies that examine gene-
gene interaction in variants with modest to weak effect sizes. Furthermore, changes in age at
onset by genotype among PSENI p.G206A carrier families ranged from 10 to 20 years,
whereas those among individuals with LOAD ranged from 1 to 6.2 years. This finding
suggests that the difference in age at onset by genotype is likely to be smaller in noncarriers
compared with G206A carriers.

Familial EOAD is caused by mutations in 3 genes: APP, PSEN1, and PSENZ2.25-28 Support
clearly exists for genetic modifiers because age at onset varies widely for carriers of APP,
PSENZ, and PSENI. To date, only a few studies®41! have reported modifiers. Investigators
have attributed observed variable age at onset in PSEN2to the APOE ¢4 allele.34 For
PSENI, Vélez and colleagues!! conducted a pooling- and bootstrap-based GWAS to identify
multiple modifiers. Among those, they observed that rs10173717 in NPHPI may alter age at
onset in PSENI p.Glu280Ala carriers. However, rs10173717 reported by Vélez et all was
located 40.5 kilobases (kb) away from our own discovery signal rs906815 and 76.1 kb away
from our GWAS signal rs17842680. The authors did not report the difference in age at onset

by genotype.

In this study, 5 promising genetic modifiers were identified among families multiply affected
by AD: SNX25, PDLIM3, SORBSZ, SH3RF3, and NPHP1. SNX25 has been implicated in
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regulating endosome sorting and signaling.2%39 Given its potential role in regulating
membrane protein trafficking excess levels of amyloid B in individuals with the PSEN1
p.G206A variant, this gene may be a biologically relevant modifier. This hypothesis is
further supported by an earlier report3! that found that SN.X3, a gene in the same family, was
associated with AD, and SA.X3regulates and interacts with the retromer membrane.
PDLIM3is reported to be associated with diabetes and cardiomyopathy.32 Although there
have been reports of insulin-related genes, little is known about the role of PDL/IM3in
dementia to date. Interestingly, however, the PDZ domain is regulated by SA.X27 retromer
protein, and deficiencies in retromers have been associated with AD.33

The remaining 3 candidate genes encode proteins with a functional domain, SH3. These
evolutionarily conserved domains are defined by sequence homology and are involved in
protein-protein interaction.343% SH3 domains are ubiquitous intracellular protein modules;
structural and functional studies®4-37 reveal how they interact with their praline-rich ligands
to promote the formation of specific protein aggregates. The SH3 domain is related to the
WW and PTB domains3” and may interact with APPto modulate the degradation of APP.35
The SORBS2 gene—an SH3-binding domain gene located in 4g35.1 under the strongest
linkage peak—transcribes a brain-specific splice variant known as NARGBP2.38 This variant
was reported to influence the integrity off-actin in the dendritic spines of neurons. Cestra and
colleagues3® observed that overexpression of NARGB2 in mice caused aggregation of f-actin
bundles in dendritic spines and may influence phenotypic expression. Because alteration of
synaptic shape may be associated with the biological progression of AD, variants in
SORBS2Z may influence variation in age at onset by affecting dendritic spine morphologic
and subsequent neurodegenerative processes.

SH3RF3isan important paralog of SORBSZ2. Because paralogs arise from gene duplication
within the same species and we found allelic association between age at onset and SORBS2
as well as SH3RF3, SH3RF3is a biologically plausible gene. In the present data set, the rare
homozygous genotype carriers had age at onset approximately 20 years earlier than those
with the wild-type homozygous genotype under the model that adjusted for sex, AD, APOE
e4, and kinship coefficient. These results suggest that some individuals harbor a variant in
SH3RF3that may modify the effect of the PSENI p.G206A mutation on the disease
phenotype. We note that the SH3 domain is found in proteins of signaling pathways
regulating the cytoskeleton. They also regulate the activity state of adaptor proteins (which
mediate specific protein-protein interactions that drive the formation of protein complexes)
and other tyrosine kinases (which transfer a phosphate group from adenosine tri-phosphate
to a protein in a cell, thereby functioning as an on-and-off switch). Thus, it is plausible that
this gene may be involved in variable gene expression of related genes, which in turn modify
the age at onset of disease.

NPHPI, another SH3 domain gene, encodes a nephrocystin-1 protein that may influence cell
division and cell signaling localized to microtubule-based structures.? This gene has been
reported to be associated with retinitis pigmentosa, nephronophthisis, and neurodegeneration
with brain iron accumulation 1. This disease is associated with dementia as part of the
phenotypic spectrum, supporting biological relevance of this gene in the neurodegenerative
process.

JAMA Neurol. Author manuscript; available in PMC 2016 September 03.
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This study has some limitations. Age at onset of AD phenotype is inherently difficult to
measure accurately because it is difficult to detect prodromal symptoms unless each
individual is followed up longitudinally from preclinical stage to development of AD using
sensitive biomarkers. Thus, reported age at onset is an approximation. In addition, the
genetic variants identified from this study may be relatively common in Caribbean Hispanics
but not in the general US populations. Thus, the identified variants themselves may have
limited value in other ethnic cohorts. However, our earlier studies*1-43 have found that when
2 cohorts of different ethnicity are studied, the same set of genes tends to be implicated, but
the effect size associated with each variant differs somewhat. For example, the effect size for
each SNP vary among Caribbean Hispanics, African Americans, and whites#142; however,
all 3 ethnic groups had SNPs that were significantly associated with AD within the gene.
Similarly, SNPs in ABCA7were associated with AD in African Americans and whites, but
the effect sizes differed.43

Conclusions

This study of carriers of the PSENI p. G206A mutation has identified variants in SN.X25,
PDLIM3, and a family of SH3 domain genes (SORBSZ2, SH3RF3, NPHPI) that may modify
age at onset of EOAD. Furthermore, variants in SORBSZ consistently were associated with
delayed onset in EOAD and LOAD, although less profoundly so in LOAD. On the other
hand, the discovery variant and flanking variants in SH3RF3and NPHPI were significantly
associated with EOAD, but their effect size was modest with LOAD. One possible
explanation for lack of association in the present data set may be that the effect size for
SH3RF3and NPHPI may be relatively modest, and a larger study may be needed to detect
significant association. The present findings are worthy of further investigation to
understand the pathobiology of AD.
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Refer to Web version on PubMed Central for supplementary material.
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Demographic and Clinical Characteristics of Sequenced Participants and Family

Members?

Genotyped (n =56 [5

Sequenced (n =31 [26

Characteristic Families]) Families]) Combined GWAS (N = 2888)
Affection status
Affected 21 (37.5) 26 (83.9) 1473 (51.0)
Unaffected 32 (57.1) 5(16.1) 1408 (48.8)
Unknown 3(5.4) 0 6(0.2)

Sex, male:female

19:37 (33.9:66.1)

12:19 (38.7:61.3)

970:1918 (33.6:66.4)

Age at onset or age at last examination,

mean (SD). y 57.2 (7.0) 57.9 (9.9) 74.0 (10.0)
Educational level, mean (SD), y 10.0 (4.6) 9.1(5.2) 5.7 (4.7)
APOE frequency
E4 23 (20.5) 19 (30.6) 1238 (23.0)
E3 85 (75.9) 43 (69.4) 3849 (71.5)
E2 4(3.6) 0(0.0) 293 (5.5)

Abbreviation: GWAS, genome-wide association study.

aData are presented as number (percentage) of participants unless otherwise indicated. The combined GWAS data set has a total of 2324 unrelated
individuals (2321 families and 3 individuals who married into the families).
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