

NEUROIMAGING

Brain Volumetric Trajectories in Down Syndrome and Autosomal Dominant Alzheimer Disease

James Tyler Kennedy¹ | Julie K. Wisch¹ | Brian A. Gordon² | Anna H. Boerwinkle¹ | Tammie L.S. Benzinger³ | William E Klunk⁴ | Michael Rafii⁵ | Sid E. O'Bryant⁶ | Julie C Price⁷ | Michael A. Yassa⁸ | Mithra Sathishkumar⁸ | Liv McMillan⁸ | Adam M. Brickman⁹ | Patrick J. Lao¹⁰ | Charles M Laymon¹¹ | Sharon J. Krinsky-McHale¹² | Florence Lai¹³ | H. Diana Rosas⁷ | Sigan L Hartley¹⁴ | Shahid Zaman¹⁵ | Ira T. Lott⁸ | Joseph H. Lee¹⁶ | Ricardo Allegri¹⁷ | Sarah Berman⁴ | Jasmeer P. Chhatwal^{7,18} | Helena C Chui¹⁹ | Carlos Cruchaga²⁰ | Martin R. Farlow²¹ | Gregory S Day²² | Jae-Hong Lee²³ | Johannes Levin²⁴ | Ralph N Martins²⁵ | Hiroshi Mori²⁶ | Richard J. Perrin³ | Stephen Salloway²⁷ | Raquel Sanchez-Valle²⁸ | Peter W. Schofield²⁹ | Chengjie Xiong³⁰ | Jason J. Hassenstab³¹ | Eric McDade³² | Randall J. Bateman³ | Benjamin L Handen⁴ | Elizabeth Head³³ | Nicole Schupf⁹ | Mark Mapstone⁸ | Bradley T. Christian¹⁴ | Beau Ances¹ | Dominantly Inherited Alzheimer Network and the Alzheimer's Biomarker Consortium-Down Syndrome

¹Washington University in St. Louis School of Medicine, St. Louis, MO, USA

²Department of Radiology, Washington University School of Medicine, Saint Louis, MO, USA

³Washington University in St. Louis, St. Louis, MO, USA

⁴University of Pittsburgh, Pittsburgh, PA, USA

⁵Alzheimer's Therapeutic Research Institute, San Diego, CA, USA

⁶University of North Texas Health Science Center, Fort Worth, TX, USA

⁷Massachusetts General Hospital, Boston, MA, USA

⁸University of California, Irvine, Irvine, CA, USA

⁹Columbia University, New York, NY, USA

¹⁰Columbia University Irving Medical Center, New York, NY, USA

¹¹Department of Radiology and Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA

¹²New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, USA

¹³Harvard/Massachusetts General Hospital, Boston, MA, USA

¹⁴University of Wisconsin-Madison, Madison, WI, USA

¹⁵Cambridge Intellectual and Developmental Disabilities Research Group, Department of Psychiatry, University of Cambridge, Douglas House, Cambridge, UK

¹⁶Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA

¹⁷INEBA, Buenos Aires, Argentina

¹⁸Brigham and Women's Hospital, Boston, MA, USA

¹⁹Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA

²⁰Washington University School of Medicine, Saint Louis, MO, USA

²¹Indiana Alzheimer's Disease Research Center, Indianapolis, IN, USA

²²Mayo Clinic, Jacksonville, FL, USA

²³Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, Republic of (South)

²⁴German Center for Neurodegenerative Diseases (DZNE), Munich, Germany

²⁵Edith Cowan University, Perth, Western Australia, Australia

²⁶Osaka City University Medical School, Osaka, Japan

²⁷Alpert Medical School, Brown University, Providence, RI, USA

²⁸Alzheimer's disease and other cognitive disorders Unit. Hospital Clínic de Barcelona; FRCB-IDIBAPS; University of Barcelona, Barcelona, Spain

²⁹University of Newcastle, Newcastle, NSW, Australia

³⁰The Charles F. and Joanne Knight Alzheimer Disease Research Center, St. Louis, MO, USA

³¹Washington University St. Louis, St. Louis, MO, USA

³²Washington University in St. Louis, School of Medicine, St. Louis, MO, USA

³³The UC Irvine Institute for Memory Impairments and Neurological Disorders (UCI MIND), Irvine, CA, USA

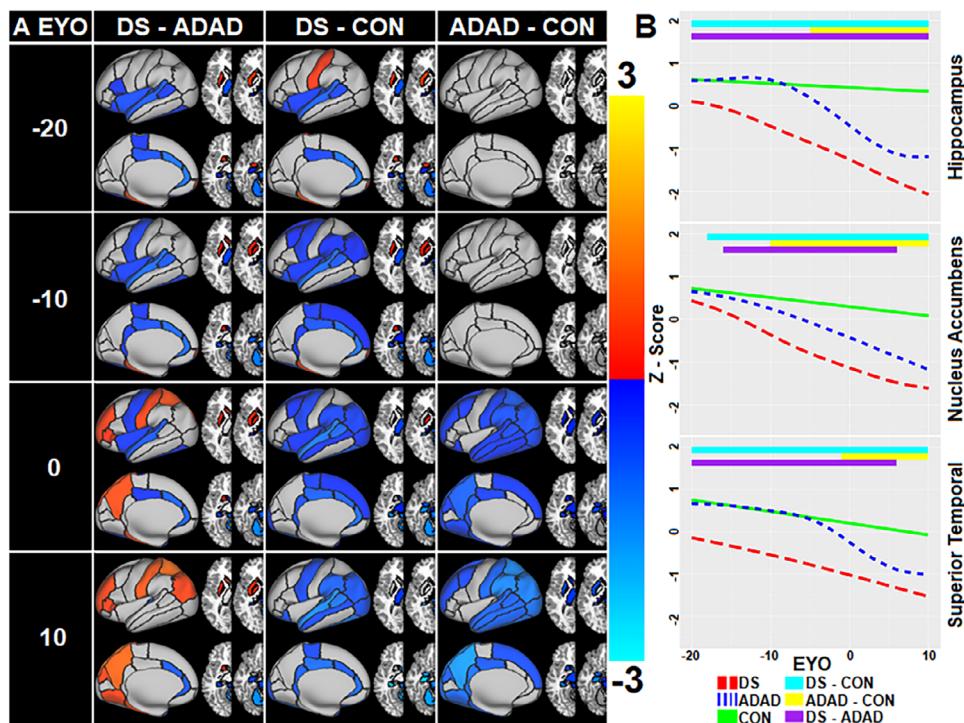
Correspondence

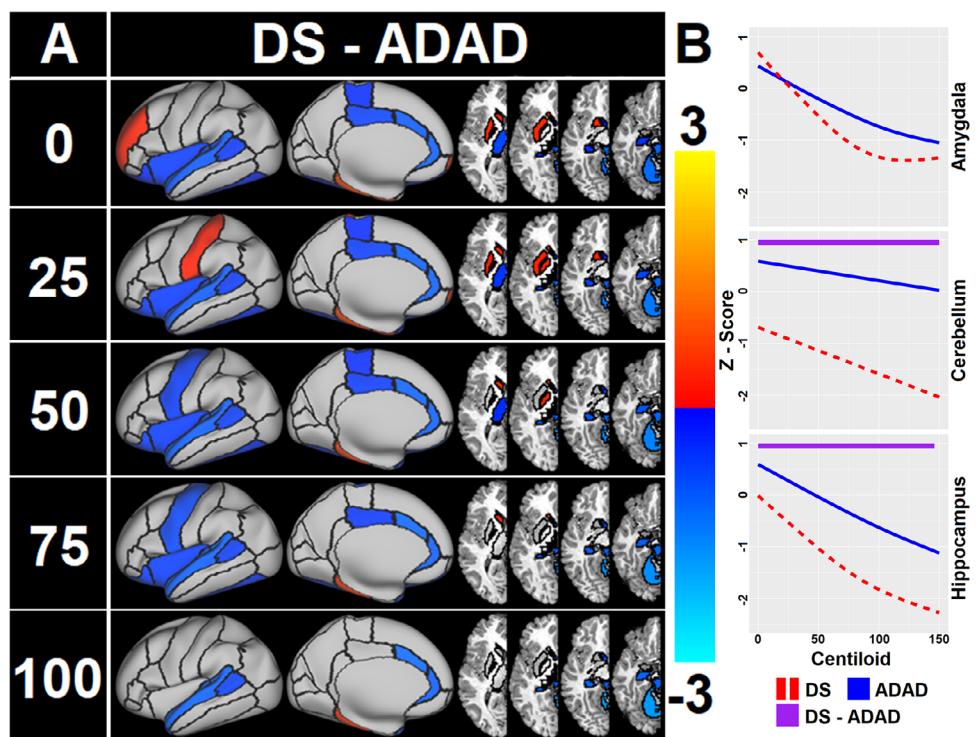
James Tyler Kennedy, Washington University in St. Louis School of Medicine, St. Louis, MO, USA.

Email: jtkenedy@wustl.edu

Abstract

Background: Alzheimer disease (AD) related cognitive decline occurs at relatively young ages in individuals with Down syndrome (DS, early-mid 50s) and in those with autosomal dominant mutations (ADAD, 40-50s). Both groups show similar patterns of amyloid accumulation. We examined if brain volumes are similarly affected by AD pathology in individuals with DS and ADAD.


Method: Data for cognitively stable and declining participants was obtained from the Alzheimer Biomarker Consortium-Down Syndrome (ABC-DS) and the Dominantly Inherited Alzheimer Network (DIAN). Stability/decline was identified based on cognitive testing and interview of individuals and caregivers by trained assessors. Cognitively stable family members without DS/ADAD mutations were recruited as controls from both studies. Participants underwent MRI and amyloid positron emission tomography (PET) scans from which brain volumes and amyloid (centiloids) were derived, respectively. Participants from DIAN had Pittsburgh Compound-B (PIB) scans, ABC-DS had PIB or florbetapir. Nonlinear cross-sectional associations between regional brain volumes and estimated years to onset of cognitive decline (EYO, negative values before onset, positive after) and centiloid were evaluated using generalized additive models while controlling for sex and random effects of family. EYO was set to 52 for all participants with DS and based on parental decline/mutation type for participants with ADAD. EYO for controls was based on the EYO of their family member.


Result: Data from 239 participants with DS (47 declining), and 340 participants with ADAD (122 declining), and 263 familial controls were included. Higher EYO and centiloid values were associated with lower brain volumes in almost all regions. At earlier EYOs, individuals with DS typically had smaller regional volumes than ADAD or sibling controls, with volume declining linearly across the EYO range. By contrast, ADAD mutation carriers had similar volumes to non-carriers at early EYOs, with

volumes diverging as early as 10 years before decline. Brain volumes and centiloid values were inversely related in ADAD and DSAD. Volume in key cortical regions were similar by the expected year of onset in both groups.

Conclusion: ADAD and DSAD demonstrated different temporal patterns of regional neurodegeneration prior to cognitive change despite being similarly affected by early onset amyloid.

	All			Stable			Declining		
	Control	DS	ADAD	Control	DS	ADAD	Control	DS	ADAD
N (Male)	263 (101)	239 (131)	340 (149)	263 (101)	183 (96)	212 (96)	-	47 (32)	128 (50)
N Amyloid Scans	244	184	306	244	157	196	-	36	110
N APP/PSEN1/PSEN2	0/0/0	0/0/0	60/238/25	0/0/0	0/0/0	35/142/24	-	0/0/0	25/96/1
APOE E4 Prevalence	0.294	0.212	0.285	0.294	0.189	0.278	-	0.34	0.297
Age (SD)	40.2 (11.5)	42.5 (9.5)	39.6 (10.6)	40.2 (11.5)	41.1 (8.9)	35.5 (9.3)	-	52.2 (5.5)	46.4 (9.1)
EYO (SD)	-8.4 (11.7)	-8.5 (9.5)	-6.9 (10.9)	-8.4 (11.7)	-10.9 (8.9)	-13.3 (8.6)	-	0.1 (3.9)	3.6 (3.9)
Centiloid (SD)	-0.9 (3.4)	25.5 (35.9)	46 (51.1)	-0.9 (3.4)	15.7 (27.3)	24.5 (30.9)	-	74.9 (57.3)	84.3 (37.5)

