American Journal of Hypertension, 2025, XX, 1-9

https://doi.org/10.1093/ajh/hpaf159
Advance access publication 27 August 2025

OXFORD Original Article

Original Article

Associations of Blood Pressure Level and Variability
With Cortical Thickness: A Cross-Sectional Analysis
From the Maracaibo Aging Study

Romeo De Leon,'? Shana Garza,! Silvia Mejia-Arango,"** Kristina P. Vatcheva,'* Sokratis Charisis,® Claudia Satizabal,>®’ Luis J. Mena,?
Joseph H.Lee ' Joseph D.Terwilliger,>!*%12 Eron Manusov,“** Sudha Seshadri,*®*’ Jose Gutierrez,”* Gladys E.Maestre,3%;
Adam M. Brickman,®'**% Jesus D. Melgarejo’3*"

Institute of Neuroscience, Neuro and Behavioral Integrated Service Unit, School of Medicine, University of Texas Rio Grande Valley, Harlingen, Texas, USA
*Universidad Auténoma de Guadalajara School of Medicine, Guadalajara, Mexico

3South Texas Alzheimer’s Disease Research Center, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, The University of Texas Health Science
Center at San Antonio, San Antonio, Texas, USA

“Rio Grande Valley Alzheimer’s Disease Resource Center for Minority Aging Research, School of Medicine, University of Texas Rio Grande Valley, Harlingen, Texas,
USA

°School of Mathematical and Statistical Science, University of Texas Rio Grande Valley, Brownsville, Texas, USA

°Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, Texas, USA

’Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA

fAcademic Unit of Information Technology Engineering, Polytechnic University of Sinaloa, Mazatlan, Mexico

°Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University, New York, New York, USA

9Sergievsky Center & Department of Epidemiology and Neurology, Columbia University, New York, New York, USA

"Departments of Psychiatry and Genetics & Development, Columbia University, New York, New York, USA

“Division of Public Health Genomics, National Institute for Health and Welfare, Helsinki, Finland

“Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA

“Department of Human Genetics, University of Texas Rio Grande Valley, Brownsville, Texas, USA

‘Corresponding author: Jesus D. Melgarejo (jesus.melgarejo@utrgv.edu)

BACKGROUND: Although high blood pressure (BP) level and variability are associated with Alzheimer’s disease (AD), their relation-
ship with cortical thickness in brain regions that are associated with AD is unclear. Furthermore, the role of 24-h BP has not been
examined. We investigated the associations of office and ambulatory BP measures with cortical thickness in brain regions implicated
in AD.

METHODS: We performed a cross-sectional analysis of 304 participants without dementia from a population-based study with office
and 24-h BP and magnetic resonance imaging data. We considered cortical thickness values derived from 10 regions throughout the
frontal, parietal, and temporal lobes, and the posterior cingulate cortex that are associated with risk and progression of AD. The asso-
ciation between BP and cortical thickness was tested using adjusted linear regression models.

RESULTS: The mean age was 58.1 years and 231 (76%) were women. Higher office systolic BP was associated with thinner temporal (8
=-0.059; 95% confidence interval [CI], -0.112, -0.005) and posterior cingulate cortex (8 = -0.095; 95% CI, —0.145, —0.045). 24-h and night-
time BP levels were associated with thinner seven regions, with B-estimates ranging from -0.103 (95% CI, —-0.182, -0.012) to —0.045
(95% CI, -0.080, —0.010). A higher 24-h BP variability was associated with thinner middle frontal (8 = -0.156; 95% CI, —0.282, -0.030) and
middle temporal (8 = -0.146; 95% CI, -0.268, —0.024) gyri, and posterior cingulate cortex (8 = —0.134; 95% CI, -0.026, —0.009).

CONCLUSIONS: Increased ambulatory BP level and variability are associated with cortical thinning in regions associated with AD.
Better BP evaluation with out-of-office approaches might reduce brain structural changes associated with AD.

Keywords: AD signatures; ambulatory blood pressure monitoring; blood pressure; blood pressure level; blood pressure variability;
brain MRI; hypertension; population-based study.
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Graphical Abstract

Associations of Blood Pressure Level and Variability with Cortical Thickness
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Thinning or atrophy in certain cortical brain regions is associated
with risk and progression of Alzheimer’s Disease (AD).! Investigating
cortical thickness in these regions using magnetic resonance
imaging (MRI) provides an opportunity for early detection and the
identification of modifiable risk factors during the initial stages of
dementia. Elevated blood pressure (BP) is a modifiable risk factor
that is associated with lower cortical thickness,? cognitive impair-
ment and dementia.® In addition to BP level, high BP variability has
been associated with accumulation of beta-amyloid,* cerebral small
vessel disease,” brain atrophy,® and dementia.”

Although BP is often measured at the office or clinic visits, out-
of-office BP assessments including the 24-h ambulatory BP moni-
toring provide more accurate values of individuals’ BP by recording
daytime and nighttime BP For instance, 24-h and nighttime BP
are strongly associated with cerebral small vessel disease®" and
dementia risk.” We recently demonstrated that a higher 24-h
BP variability over time was associated with cognitive decline.*®
A post hoc analysis of the Systolic Blood Pressure Intervention
Trial Memory and Cognition in Decreased Hypertension (SPRINT-
MIND) study further showed that increased 24-h BP variability
in the control group was associated with a higher risk of demen-
tia."* While assessment of 24-h ambulatory BP monitoring may be
less convenient than office BP in advanced AD, assessing cortical
thickness before AD onset offers a valuable opportunity to inves-
tigate the relationship between BP and cortical atrophy in regions
associated with AD risk and progression. Therefore, we aimed
to investigate the associations of office and 24-h ambulatory BP
monitoring with cortical thickness in regions relevant to AD.

METHODS

Material and methods

The Institutional Review Boards of the Cardiovascular Institute
at the University of Zulia, Maracaibo, and Columbia University,

New York, approved the study, which complied with the Helsinki
Declaration for investigations into human subjects.” An informed
consent form was signed by each participant. We followed the
Oxford Equator Network STROBE guidelines https://www.equa-
tor-network.org/.

Study participants

The Maracaibo Aging Study is a prospective study of 2915 com-
munity participants >40 years of age recruited from the Santa
Lucia and Santa Rosa neighborhoods in Maracaibo, Venezuela.'®
The baseline assessment was conducted between 1998 and 2001
for the Santa Lucia participants, and between 2010 and 2015 for
the Santa Rosa participants. The purpose of the study is to inves-
tigate age-related diseases, particularly neurological and cardio-
vascular conditions.® Of the 2915 participants in the database,
we included 304 participants dementia-free at baseline who
underwent brain MRI scans, 24-h ambulatory BP monitoring, and
had a minimum of six and three nocturnal readings which are
sufficient to maintain the prognostic information of daytime and
nocturnal BP level,”” and at least 48 BP readings over 24-h for BP
variability.’®

Brain MRI acquisition

MRI scans were obtained on a 1.5-T scanner (GE Healthcare).
They included T1-weighted, T2-weighted, gradient echo,
diffusion-weighted imaging, angiography, and T2-weighted fluid-
attenuated inversion recovery (FLAIR) scans. The FLAIR image
parameters were TR =8,000 ms, TE =123 ms, 2,000 [ms] inversion
time, 25-cm FOV, 2 NEX, 256 x 192 matrix with 2-mm slice thickness,
0 mm spacing, 63 slices; 6:01; COIL 8NHEAD_A, and an oblique ori-
entation. Participants with a pacemaker, aneurysm clip, neurostim-
ulator, cochlear implant, or body weight >110 kg did not undergo
brain MRI scans. The MRI scans were subsequently transferred to
Columbia University for analysis of the scans.”
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Brain MRI regions of interest for AD

Brain MRI scans were analyzed to derive regional cortical
thickness using FreeSurfer.” There are cortical regions in the
brain that appear to be thinner in individuals who subse-
quently develop AD compared with those who stay cognitively
stable decades prior to symptom onset.! These regions, distrib-
uted throughout the cortical mantle, are often described as an
“AD signature” because they are associated with AD risk and
progression.' They include the following gyri: superior frontal,
middle frontal, supramarginal, superior parietal, precuneus,
temporal, middle temporal, inferior temporal, entorhinal, fusi-
form (Figure 1). We additionally included the posterior cin-
gulate cortex as baseline atrophy associates with AD.?%?" We
averaged the right and left sides of both cerebral hemispheres
for each one of the cortical thickness regions.

BP assessments

Training nurses or physicians measured office BP readings with
a validated oscillometric device (Dynamap). Office BP meas-
urement was the average of five consecutive BP readings after
5 min of rest in a seated position. The assessment of the 24-h
ambulatory BP monitoring has been previously discussed in
detail.” Briefly, the 24-h BP readings were obtained with oscil-
lometric automated devices (validated oscillometric 90202 or
90207 Spacelabs monitors).?? Readings were programmed at
15-min intervals during the day from 06:00 am to 11:00 pM,
and at 30-min intervals from 11:00 pM to 6:00 aAM. The within-
subject 24-h systolic BP level and variability were time-
weighted as time intervals between BP readings vary. BP
variability was captured as the average real variability (ARV)
index.?” Our analysis focused on the ARV as it is the only metric
that captures variability among consecutive BP readings.”* ARV
was calculated as the average of the absolute changes between
consecutive BP readings, as follows:

n—1

1
ARV = —=— > wX |BPi,; — BPy]
2w

where k ranges from 1 ton - 1, w is the time interval between
BPk and BPk + 1, and n is the number of BP readings. BP level and
variability were derived for 24-h, daytime, and nighttime meas-
ures. The dipping ratio was calculated by dividing the nighttime
BP by the daytime BP.»
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Covariates

Clinical variables including age (years), sex, height (in cm) and
weight (in kg), self-reported smoking status (yes/no), history
of diabetes mellitus (yes/no), serum total cholesterol (mg/dL),
self-reported previous history of cardiovascular disease or stroke
(ves/no), and use of antihypertensive and antidiabetic medica-
tions (yes/np) were collected. We followed the 2017 American
Heart Association/American Collage of Cardiology guidelines for
the management of hypertension to define categories of hyper-
tension.?® Office hypertension was defined as a systolic or diastolic
BP over 130/80 mm Hg; respectively. Twenty-four-hour hyperten-
sion was a 24-h systolic or diastolic BP level over 125/75 mm Hg.
Diabetes was defined as a serum fasting glucose level >126 mg/dL
or a history of the use of antidiabetic medication (yes/no).

Statistical analysis

Continuous data are presented as the mean and SD for normally
distributed variables and as the median (Q1-Q4) for nonnormally
distributed variables. Categorical data are shown as frequencies
(%). Baseline characteristics, office and ambulatory BP measure-
ments, and the distribution of brain MRI regions of interest for AD
were reported for the whole study sample.

Adjusted linear regression models were used to investigate
the associations of office and ambulatory BP level and variabil-
ity (exposure variables) with cortical thickness associated with
AD (outcomes). Covariates were selected based on their biolog-
ical relevance with BP level and variability, and cortical thick-
ness. Covariates included age, sex, years of education, body mass
index, intracranial volume, smoking, alcohol intake, total serum
cholesterol, history of cardiovascular disease, diabetes mellitus,
and use of antihypertensive medication. For BP variability and
night-to-day ratio, models were additionally adjusted by the cor-
responding mean BP level. Exploratory analysis were conducted
to replicate whether BP level and variability were associated with
cortical thickness in adjusted logistic regression models. Using
the 10th percentile of AD regions cortical thickness as a cutoff
point, we generated a proxy to categorize individuals with atrophy
(below the 10th percentile) and normal thickness (>10th percen-
tile) for this specific population. Odds ratios and 95% confidence
interval (CI) were displayed in a forest plot. We used SAS software,
version 9.4, and maintenance level 5. Statistical significance was
indicated by a two-tailed a-level of 0.05 or less.
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Figure 1. Brain atlas highlighting the cortical regions of interest for Alzheimer’s disease.
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RESULTS

Baseline characteristics

The mean age was 58.1+12.2 and 231 (76.0%) were women
(Table 1). The proportion of current smoking, alcohol intake,
office and 24-h hypertension, use of antihypertensive medi-
cation, diabetes mellitus, and history of cardiovascular dis-
eases was 28.3%, 48.4%, 55.9%, 42.4%, 36.2%, 15.1%, and 8.2%,
respectively. Table 2 contains the mean and SD of the brain MRI
regions of interest.

Table 1. Baseline characteristics of the study sample

Associations of office and ambulatory BP level
with cortical thickness

Office (P <0.031), 24-h (P <0.0.30), daytime (P < 0.035), and night-
time (P<0.013) BP levels were associated with MRI regions of
interest for AD (Table 3). For office systolic BP, every + 1SD (mm
Hg) increase was associated with -0.059 mm (95% CI, -0.122
and -0.005) thinner temporal pole and -0.095 mm (95% CI,
-0.145 and -0.045) thinner posterior cingulate cortex. Each + 1
SD increase in 24-h, daytime, and nighttime BP was associated

Baseline characteristics Study sample
(n=304)
Demographics
Age, years 58.1+12.2
Women, n (%) 231 (76.0)
Education, years 6 (5-11)
Clinical variables
Body mass index, kg/mt2 27.7 £5.2
Current smoking, n (%) 86 (28.3)
Alcohol intake, n (%) 147 (48.4)
Office hypertension, n (%) 170 (55.9)
24-h hypertension, n (%) 129 (42.4)
Antihypertensive treatment, n (%) 110 (36.2)
Diabetes mellitus, n (%) 46 (15.1)
History of cardiovascular diseases, n (%) 25 (8.2)
Biochemistry features
Serum glucose, mg/dL 108.5 £35.7
Serum total cholesterol, mg/dL 196.8 + 44.1
Blood pressure measurements, mm Hg
Office systolic blood pressure level 139.8 +25.1
Ambulatory systolic blood pressure level
24-h 120.8 +15.0
Daytime 1228 +14.4
Nighttime 116.1+17.8
Ambulatory systolic blood pressure variability
24-h average real variability 8.55+1.86
Daytime average real variability 8.83+2.10
Nighttime average real variability 8.01 +2.55
Night-to-day ratio 0.94 +0.07

Abbreviation: AD, Alzheimer’s disease. Values are means and SD and frequencies (%) or are reported as median and interquartile range if following a
nonparametric distribution. Previous history of cardiovascular disease included ischemic heart disease, heart failure, and stroke.

Table 2. Cortical thickness of brain MRI regions of interest for Alzheimer’s disease

Brain MRI regions of interest for Alzheimer’s disease Study
sample
(n=304)
Frontal lobe, mm
Superior frontal gyrus 2.79+0.15
Middle frontal gyrus 247 £0.13
Parietal lobe, mm
Supramarginal gyrus 2.34+0.13
Superior parietal gyrus 2.12+0.11
Precuneus gyrus 2.25+0.12
Temporal lobe, mm
Temporal pole 3.57+0.32
Middle temporal gyrus 2.86£0.14
Inferior temporal gyrus 3.00£0.17
Entorhinal cortex 3.24+0.28
Fusiform gyrus 2.74£0.14
Posterior cingulate cortex 2.54+0.16

Abbreviation: MRI, magnetic resonance imaging.
Values are means and standard deviation (SD).

Figure 1 displays a brain atlas highlighting the brain MRI regions of interest for AD.
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Table 3. Association of BP level with cortical thickness of brain MRI regions of interest for Alzheimer’s disease

Brain MRI AD regions

Office and ambulatory systolic BP level measurements

Office BP
(+ 10 mm Hg)

24-h BP
(+ 10 mm Hg)

Daytime BP
(+ 10 mm Hg)

Nighttime BP
(+ 10 mm Hg)

B-coefficient
(95% CIy?

B-coefficient
(95% CI)?

B-coefficient
(95% CIy?

B-coefficient
(95% CI)*

Frontal lobe, mm
Superior frontal gyrus
Middle frontal gyrus

Parietal lobe, mm
Supramarginal gyrus
Superior parietal gyrus
Precuneus gyrus

Temporal lobe, mm
Temporal pole
Middle temporal gyrus
Inferior temporal gyrus
Entorhinal cortex
Fusiform gyrus

Posterior cingulate cortex

-0.036 (~0.083, 0.010)
~0.041 (~0.093, 0.010)

~0.028 (~0.077, 0.022)
~0.015 (~0.069, 0.040)
~0.026 (~0.077, 0.025)

~0.059 (~0.112, —0.005)
-0.034 (~0.084, 0.016)
~0.044 (~0.095, 0.007)
-0.034 (~0.086, 0.017)
~0.032 (~0.084, 0.020)
-0.095 (~0.145, —0.045)"

-0.026 (~0.098, 0.045)
~0.033 (-0.112, 0.046)

~0.083 (~0.158, —0.008)

-0.007 (~0.090, 0.077)
~0.031 (-0.109, 0.048)

~0.090 (~0.172, —0.009)
-0.094 (~0.170, —0.018)
~0.092 (-0.170, —0.014)
-0.079 (~0.157, 0.001)

~0.103 (~0.182, —0.024)
-0.090 (~0.168, —0.012)

-0.025 (~0.098, 0.049)
~0.032 (~0.114, 0.049)

~0.083 (~0.161, —0.006)
-0.009 (~0.095, 0.077)
~0.032 (~0.113, 0.048)

~0.080 (~0.165, 0.004)
-0.097 (~0.176, -0.019)'
~0.083 (~0.164, —0.003)
-0.078 (~0.159, 0.003)
~0.094 (~0.175, -0.012)
-0.095 (~0.175, -0.014)’

~0.026 (~0.086, 0.034)
~0.030 (~0.096, 0.037)

~0.069 (~0.132, —0.005)
-0.002 (~0.073, 0.068)
~0.023 (-0.089, 0.043)

~0.088 (~0.156, —0.019)
-0.072 (~0.136, —0.008)
~0.089 (-0.154, —0.023)"
~0.065 (~0.131, 0.001)

~0.099 (-0.165, —0.032)"
~0.067 (~0.133, —0.001)

Abbreviations: MRI, magnetic resonance imaging; AD, Alzheimer’s disease; BP, blood pressure; CI, confidence interval.
Estimates (8-coefficient and 95% CI) express the association of each 10 mm Hg increase in office and ambulatory systolic BP level with 1SD unit change in brain
MRI AD regions. Negative estimates indicate that a higher systolic BP level relates with thinner (atrophy) MRI AD regions.
*Adjusted linear regression models were accounted for age, sex, years of education, body mass index, intracranial volume, smoking, alcohol intake, total serum

cholesterol, history of cardiovascular disease, diabetes mellitus, and use of antihypertensive medication.

*P<0.05; *P<0.01; **P<0.001.
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Figure 2. Association of nighttime systolic BP level (a) and daytime systolic ARV (b) with Cortical atrophy of MRI regions of interest for AD. Using

the 10th percentile, we generated a proxy of cortical atrophy defined as individuals with cortical thickness below the 10th percentile, and normal
>10th percentile. Adjusted logistic regression models were accounted for age, sex, years of education, body mass index, intracranial volume, smoking,
alcohol intake, total serum cholesterol, history of cardiovascular disease, diabetes mellitus, and use of antihypertensive medication hypertension.
For daytime systolic ARV, models additionally accounted for the mean daytime systolic BP level. OR are expressed per + 10 mm Hg increase in the
nighttime systolic BP level and + 1SD (2.10 mm Hg) increase in the daytime systolic ARV.

with lower thickness of the supramarginal gyrus, temporal pole,
middle temporal gyrus, inferior temporal gyrus, fusiform gyrus,
and posterior cingulate cortex. The adjusted p-coefficient var-
ied from -0.103 mm (95% CI, —0.182 and —0.024) to —0.059 mm
(95% CI, -0.112, —0.005). In logistic regression analysis (Figure 2),
each + 10 mm Hg increase in the nighttime systolic BP was asso-
ciated with higher odds of having cortical atrophy in the supra-
marginal gyrus, middle temporal gyrus, inferior temporal gyrus,
fusiform gyrus, and posterior cingulate cortex; odds ratios ranged
from 1.31 (95% CI, 1.04-1.65) to 1.57 (95% CI, 1.24-2.00).

Associations of ambulatory BP variability with
cortical thickness

Increased 24-h systolic ARV was associated with lower cortical thick-
ness in the middle frontal gyrus (8-coefficient per + 1SD increase in
24-h systolic ARV, -0.156 mm; 95% CI, -0.282 and -0.030; Table 4),

middle temporal gyrus (8-coefficient, ~0.146 mm; 95% CI, -0.268 and
-0.024), and posterior cingulate cortex (8-coefficient, —-0.134 mm;
95% CI, -0.260 and -0.009). We observed similar findings for day-
time systolic ARV with B-coefficients ranging from -0.183 mm to
-0.082 mm. Nighttime systolic ARV and night-to-day ratio were
not associated with cortical thickness (8-coefficients were less than
-0.107; P > 0.088). In logistic models (Figure 2), high 24-h systolic ARV
was associated with brain atrophy in the middle frontal (odds ratio
per + 1SD increase in 24-h systolic ARV, 1.92; 95% CI, 1.23-3.00), and
middle temporal gyri (odds ratio, 1.69; 95% CI, 1.06-2.69).

DISCUSSION

In this population-based study of 304 participants, increased BP
levels were associated with thinner brain regions that are asso-
clated with risk and progression of AD. We observed that 24-h
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Table 4. Association of ambulatory BP variability with cortical thickness of MRI regions of interest for Alzheimer’s disease

Brain MRI regions of interest

Measurements of ambulatory systolic BP variability

. ) 1
for Alzheimer’s disease 24-h systolic ARV

Daytime systolic ARV Nighttime systolic ARV

(+1SD =1.86 mm Hg)

(+ 1SD =2.10 mm Hg) (+ 1SD = 2.55 mm Hg)

B-coefficient P
(95% CI)? value

B-coefficient P
(95% CI) value

B-coefficient P
(95% CI)* value

Frontal lobe, mm?
Superior frontal gyrus
Middle frontal gyrus

Parietal lobe, mm?
Supramarginal gyrus
Superior parietal gyrus
Precuneus gyrus

Temporal lobe, mm
Temporal pole 0.017

~0.089 (-0.204,0.026)  0.128
-0.156 (-0.282,-0.030)  0.016

0.024 (-0.098,0.145)  0.702
~0.058 (-0.193,0.076)  0.393
~0.034 (-0.161,0.092)  0.593

0.115, 0.149) 0.797

(-
Middle temporal gyrus -0.146 (-0.268, -0.024) 0.019
Inferior temporal gyrus —-0.031 (-0.157, 0.095) 0.628
Entorhinal cortex -0.122 (-0.248, 0.004) 0.059
Fusiform gyrus -0.043 (-0.170, 0.084) 0.507

Posterior cingulate cortex -0.134 (-0.260, —0.009) 0.036

-0.092 (-0.206,0.021)  0.111
-0.183 (-0.307,-0.059)  0.004

-0.003 (-0.123,0.117)  0.961
~0.057 (-0.190,0.075)  0.395
-0.012(-0.137,0.112)  0.846

~0.056 (-0.162,0.050)  0.300
~0.033(-0.151,0.084) 0578

0.060 (-0.052,0.172)  0.293
~0.052 (-0.176,0.072)  0.409
~0.067 (-0.183,0.049)  0.259

-0.025 (-0.155,0.105)  0.707 0.094 (-0.027,0.215)  0.128
~0.164 (-0.284,-0.044)  0.008  -0.031(-0.145,0.082)  0.588
~0.044 (-0.169,0.081) 0488  -0.011(-0.127,0.105)  0.855
~0.109 (-0.234,0.016)  0.088  -0.060 (-0.177,0.057)  0.313
~0.063 (-0.189,0.063)  0.327 0.002 (-0.116,0.119)  0.978
~0.140 (-0.264,-0.016)  0.027  -0.053 (-0.170,0.063)  0.369

Abbreviations: MRI, magnetic resonance imaging; ARV, average real variability; CI, confidence interval.
Estimates (8-coefficient and 95% CI) express the association of each + 1 SD mm Hg increase ambulatory systolic BP variability with 1 SD unit change in brain MRI
AD regions. Negative estimates indicate that a higher systolic BP variability relates with thinner (atrophy) MRI AD regions. Night-to-day ratio was not related with

MRIAD regions (P >0.171).

2Adjusted linear regression models were accounted for age, sex, years of education, body mass index, intracranial volume, smoking, alcohol intake, total serum
cholesterol, history of cardiovascular disease, diabetes mellitus, and use of antihypertensive medication.’

and nighttime BP levels were the indices with the strongest asso-
ciation with the MRI outcomes. Additionally, 24-h and daytime
BP variability were also related to cortical thinning, especially
regions in the temporal lobe, regardless of the mean BP level.

Elevated BP is associated with brain atrophy.?? Some stud-
ies evaluated ambulatory BP level in relation to brain atrophy
but without focusing on cortical thickness of regions implicated
in AD.*#° Examining 24-h ambulatory BP data has clinical (by
improving management of hypertension) and scientific (by cap-
turing greater number of BP readings, BP variability, and circa-
dian rhythms) relevance in many fields, including AD research.
Our study provides novel data showing that 24-h BP (including
daytime and nocturnal BP) relate to cortical thickness of areas
associated with risk and progression of AD. Given that individu-
als who developed AD have, on average, atrophy of these regions
decades prior to disease onset,! it is possible that lowering the
probability of brain atrophy related to uncontrolled out-of-office
BP might decrease the risk of developing AD. Recent findings from
the SPRINT-MIND showed that intensive BP control reduces the
risk of cognitive impairment and dementia.’* Although office BP
will continue being the primary strategy for assessing hyperten-
sion, consideration of out-of-office values opens the opportunity
for improving our understanding of the role of vascular risk fac-
tors in dementia.

Elevated nighttime but not daytime BP was associated with
cortical thickness. Numerous studies showed that nighttime
BP level has the strongest association with outcomes including
cerebral small vessel disease,®'° cardiovascular complications,
and mortality.** We demonstrated that elevated nighttime BP is
related to a higher risk of AD.*? Similar to its association with
cardiovascular complications, our study suggests that nighttime
BP provides more information relevant to cortical thickness than
other BP indices. Moreover, the inclusion of nighttime BP meas-
ures could be particularly important because circadian rhythms
in BP can be examined using daytime and nighttime BP levels, and
regulation of the circadian rhythms is impaired in AD.*? Research

on this topic is still limited, but new technologies might overcome
challenges related to performing 24-h ambulatory BP monitoring.

Another key finding was the association of 24-h BP variability
with MRI outcomes. Currently, there are only two studies exam-
ining 24-h BP variability in relation to AD. A post hoc analysis of
the SPRINT-MIND study showed that elevated 24-h BP variabil-
ity increased the risk of developing dementia in the intensive BP
group.® The other study includes a recent publication from our
group. Using a different subset (baseline was between 1998 and
2001) of 437 subjects with both longitudinal 24-h BP data and
cognitive testing, we reported that a higher increase in 24-h BP
variability over time was associated with cognitive decline during
follow-up.” Nonetheless, there is emerging discussion about the
importance of BP variability and risk for dementia.” The mech-
anism remains unclear, regulation of physiological functions
including heart rate and BP may be impaired in dementia.?* With
the notion that AD is related to impaired circadian rhythms and
loss of physiological regulation, capturing 24-h BP variability
could potentially be utilized as a marker of vascular dysregula-
tion in AD.

Various physiopathological mechanisms could underlie
the impact of hypertension on brain parenchyma, including
vascular remodeling.*® Changes in the cerebral circulation
are driven by inflammation, mechanical stress, and the acti-
vation of factors that can lead to increased oxidative stress.®
The resulting changes in the cerebrovascular circulation can
impair cerebral blood flow, and damage the cerebral micro-
circulation (e.g., promoting cerebral small vessel disease) and
parenchyma (e.g., resulting in atrophy), increasing the risk of
cognitive and decline stroke. Given hypertension is associated
with these physiopathological changes occurring before and
after AD onset, relying solely on in-office BP might not be suffi-
cient to reduce vascular injury associated with AD development
and progression. A clear understanding of hypertension and BP
dysregulation in AD might help reduce atrophy of regions vul-
nerable to vascular damage.
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Dysregulation of the cardiovascular system plays a poten-
tial role in the physiopathological mechanism of AD.” The exact
mechanisms remain unclear and understanding the role of vas-
cular dysregulation is complex. Nevertheless, some plausible
hypotheses state that vascular dysregulation affects cerebral
autoregulation. Systemic BP is one of the determinants of cere-
bral blood flow.*® Therefore, when drastic and constant changes
in the systemic BP occur, the cerebral circulation of individuals
with AD might adapt inadequately to, for example, elevated 24-h
BP variability.*” The resulting event is an impaired cerebral blood
flow affecting perfusion pressure.” Brain atrophy is associated
with cerebral hypoperfusion related to drops in the systemic BP in
conditions such as orthostatic hypotension.*® Another potential
mechanistic hypothesis states that high BP variability may be due
toincreased arterial stiffness, which is a strong risk factor for cog-
nitive impairment and clinical AD.*® Elevated BP variability could
have an indirect effect on brain tissue as it relates to the presence
and development of cerebral small vessel disease.*®

Limitations and strengths

This study should be interpreted within the context of its limita-
tions. First, the cross-sectional design of our study limits estab-
lishing whether elevated 24-h BP level and variability can lead to
atrophy of AD brain regions.Moreover, it is possible that atrophy
of AD brain regions may lead to 24-h BP dysregulation. Although
our longitudinal data and previous studies demonstrated that ele-
vated 24-h BP variability leads to cognitive impairment, longitudi-
nal brain MRI data will be fundamental to test causality. Second,
due to the lack of longitudinal data, it is unknown whether indi-
viduals who have evidence of brain atrophy are at a higher risk
of developing AD. Third, although Hispanics are at higher risk of
developing AD and also have a higher proportion of vascular risk
factors including hypertension compared to non-Hispanic white
people, our findings should be tested and replicated in other
cohorts of individuals from different ethnicity groups. Fourth,
we found that no associations between BP level or variability and
AD-related brain MRI regions remained statistically significant
after multiple testing correction using the Benjamini-Hochberg
procedure.* However, in our study, these findings should be
interpreted with caution as both the AD-related brain regions
and ambulatory BP measures are correlated and multiple test-
ing procedures assume independence among variables.*# The
pathophysiological mechanisms linking elevated BP and var-
iability to regional brain atrophy also involve shared biological
pathways. Therefore, applying multiple testing corrections may
lead to overcorrection and reduced statistical power, potentially
masking meaningful associations. The strengths of our study
included the assessment of 24-h BP variability, which is currently
the only approach that captures BP fluctuations among consec-
utive BP readings, the analysis of volumetric brain MRI data, and
the inclusion of a multidisciplinary team constituted by primary
care physicians, neurologists, psychiatrists, cardiologists, and
geriatricians.

Conclusions

Elevated BP levels were associated with cortical thining of brain
MRI regions associated with AD risk, particularly high 24-h and
nighttime BP levels. We also observed that ambulatory BP vari-
ability was related to brain atrophy independently of the mean
BP level. An improved reduction in vascular insult related to 24-h
vascular dysregulation may lead to decreased cerebral small
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vessel disease, and in turn, reduce thinning of cortical regions
associated with AD. Nonetheless, prospective studies are needed
to test whether 24-h BP dysregulation leads to brain atrophy and
whether controlling BP level and having lower BP variability at
baseline resulted in lower atrophy of AD regions.
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