

Obesity related phenotypes in families selected for extreme obesity and leanness

RA Price, DR Reed and JH Lee

Center for Neurobiology and Behavior, University of Pennsylvania, Philadelphia, USA

BACKGROUND: Obesity is a multigenic trait, and special methods and sampling designs are needed for gene identification.

OBJECTIVE: To describe characteristics of families selected to increase information for genetic linkage studies of obesity.

DESIGN: Families having extremely obese siblings with a lean parent and sibling.

SUBJECTS: 594 members of 94 Caucasian families.

MEASUREMENTS: Measured height and weight, bioelectric impedance, skinfolds, circumferences and questionnaires.

RESULTS: Families have an extreme range of obesity phenotypes, which are bimodally distributed. The obese individuals are predominantly women with an onset of obesity early in life. Obesity onset age was negatively correlated with level of obesity, and onset ages were correlated among family members. Individual obesity measures were highly correlated. The extreme range of phenotypes within families increases family variability and presumably gene segregation.

CONCLUSION: Sampling families through extremely obese sibling pairs with a lean parent and sibling results in families with an extreme range of obesity and leanness. The large within-family variance and early age of onset should make these families highly informative for gene mapping and gene identification studies.

Keywords: obesity; leanness; body mass index; percent fat; skinfolds; linkage; association; genetic; gene mapping; age at onset; childhood obesity

Introduction

Obesity is a complex trait influenced by multiple genes and non-family environment. A number of family, twin and adoption studies have established that obesity is heritable in humans,^{1–4} and adoption studies consistently show that family environment has minimal influence on adult obesity.^{1,4–6} Studies in humans and animals have demonstrated that this heritable pattern is due to multiple genes.⁷

Identifying genes for complex traits requires special analytic methods and sampling procedures.⁸ In general, these methods focus on estimating linkage between a phenotype and genetic loci by evaluating identity (by state or by descent) of marker alleles shared by pairs of relatives. Preferential transmission of particular marker alleles from heterozygous parents to affected offspring indicates a genetic association. At present, linkage studies are used to localize susceptibility genes, and association studies are used for fine mapping and for tests of candidate genes. Future studies may use association methods for large scale genome scans as well.⁹

The ability to identify genes for complex traits depends on the genetic heritability of the trait, the population and familial risk, and the proportion of variance accounted for by each specific gene. Risch¹⁰ has shown that the ratio of familial to population risk is an indicator of whether a gene is likely to be identifiable. Generally, a risk ratio of at least two is thought to be needed for detection, but higher values are probably needed to assure gene identification. For example, Risch and Merikangas⁹ recently argued that it may be difficult to identify genes with risk ratios below four. Allison *et al*¹¹ demonstrated that risk ratios for normal levels of body fat are very low and suggested that it will be necessary to sample more extreme phenotypes. Recently, our group demonstrated that families selected through individuals with a body mass index (BMI, kg/m^2) ≥ 40 give risk ratios of at least five.¹² Therefore, sampling families with extreme obesity should provide substantial power for identifying genes for human obesity.

Below we report on the nature of obesity and leanness in a new cohort of families selected through extremely obese individuals ($\text{BMI} \geq 40$). In addition, we discuss issues related to the restrictive eligibility criteria we have imposed on our study design. This sampling design meets many of the requirements for mapping and identifying genes for a complex trait such as obesity.

Correspondence: R. Arlen Price, Ph.D, Center for Neurobiology and Behavior, University of Pennsylvania, 415 Curie Blvd., CRB135b, Philadelphia, PA 19104, USA.

Received 10 June 1997; revised 9 October and 10 December 1997; accepted 16 December 1997

Materials and methods

Rationale

We established several criteria for family ascertainment to optimize the probability of gene segregation within families. We selected families having two obese siblings, one lean sibling and one lean parent. Selecting families through an extremely obese person increases the probability that obesity predisposing genes are present in a family.¹³ Requiring an additional extremely obese sibling increases the likelihood of the obesity being familial. Gene segregation (obesity predisposing genes and obesity protective genes within the same family) is increased by requiring that at least one parent and one sibling were never obese. Analyses focusing only on the obese siblings within such families will avoid problems associated with reduced gene penetrance and should minimize the influences of genetic background and environmental conditions. Moreover, concordant sibling pairs with an extreme phenotype and discordant sibling pairs have been shown to have high statistical power for mapping genes with small effects.¹⁴ Therefore, this family sampling design should be useful for identifying genes with a range of effect sizes.

Sampling design

We selected families having at least one individual with current $\text{BMI}/(\text{weight (kg})/\text{height (m}^2\text{)}) \geq 40$, one or more siblings with current $\text{BMI} \geq 30$, one or more siblings with maximum $\text{BMI} < 27$, and one parent with maximum lifetime $\text{BMI} < 27$. We required that a minimum of two obese siblings and one parent give blood for DNA extraction and genotyping. We expect to collect a total of 300 families using these criteria, including Caucasian and African-American families. This report focuses on the characteristics of the first 94 Caucasian families.

Source of ascertainment

We advertised nationally and locally for nuclear families having at least two members who were at least 50 pounds overweight. Based on self and informant reports of height and current and maximum weight, we computed BMI for all family members. We then selected families having two obese siblings, one lean sibling and one lean parent. These stringent criteria excluded most families which initially contacted us. The first 94 Caucasian families were ascertained from screening approximately 2169 family histories, resulting in an ascertainment proportion of 4.3%. Of those families ascertained, only 3% came from obesity treatment clinics, 14% came from national organizations, 36% came from newspaper advertisements, and 48% came from advertisements in national magazines. Most people who originally contacted us were female (94%).

Geographic distribution

This is a national sample, representing a total of 40 states and with many families having first-degree relatives who resided in two or more states. However, 11 states contributed three quarters of the sample (75%). The largest number of individuals came from Pennsylvania (20%) and from three surrounding states (New York, New Jersey, Maryland, 16%). Several other states contributed 15 or more individuals, California (11%) Minnesota (7%), Washington (6%), Texas (4%), Kentucky (4%), Michigan (3%), and Florida (3%).

Occupation and education

The sample appears to represent Caucasian families in the United States. However, this group had somewhat lower education and occupational levels than the national average, perhaps reflecting the well established negative correlation between obesity and socioeconomic status^{15–17}: 2% of subjects were unemployed or received welfare, 74% were engaged in skilled or unskilled labor, 18% of subjects were in white collar and business positions and 6% of subjects were in professional careers. Education level roughly matched professional status: 10% of subjects did not finish high school, 29% of subjects were high school graduates, 32% of subjects completed some college or technical school, 20% of subjects completed college and 9% of subjects had post-baccalaureate degrees.

Obesity assessment

Obesity measures were selected which assessed total body fat and body fat distribution. We used two measures to assess overall obesity, BMI, and total fat mass (kg) and percent body fat as estimated from bioelectrical impedance (BIA). Subjects were measured for height and weight without shoes, wearing hospital gowns. BIA, which is used to estimate amount and percentage of body fat, was measured with the subject lying down using a Valhalla Bio-Resistance Body Composition Analyzer (Vallhalla Scientific, San Diego, CA, USA). We also assessed regional fat by measurement of skinfolds and circumferences. Three replicate skinfold measurements were taken at the mid-biceps, triceps, subscapular and suprailiac (level with the umbilicus) locations for all subjects using Lange calipers. Circumferences were measured at the upper arm, waist, abdomen, buttocks, calf, chest (males) and neck and shoulders (females) (all at widest part), and hips (just below iliac crest) and thigh (just below gluteal fold). Bone breadth was measured at the elbow, ankle and wrist to give an estimate of frame size.

We obtained weight and height values in three different ways. Subjects who were directly assessed were measured by the research interviewers as described above (direct assessment). Other subjects provided their weight and height, and a subset of these subjects also measured their own waist and hip

circumferences, using the same type of tape measure used by the interviewers, and with detailed instructions (self-measure). Self-measured heights and weights and self-measured body circumferences have been shown to be accurate.^{18–23} Finally, when family members had died or the family member refused to participate, their age, height and weight were estimated by the median values reported for the missing family member by their first degree relatives. The estimation of the heights and weights of subjects by their first degree family members appears to be valid, although subject to the same bias of self-reported height and weight.^{24–26}

Standardization of data collection

All research interviewers were trained to assess body composition and other phenotypic measures by attending at least two training sessions at the Obesity Research Center at St Luke's Hospital/Columbia University. New interviewers received further training at the University of Pennsylvania by performing dual measurements (experienced interviewer and new interviewer) for at least two families. The BIA measurement devices at the Obesity Research Center at St Luke's Hospital/Columbia University and at the Behavioral Genetics Laboratory at the University of Pennsylvania were calibrated by the makers (Vallhalla Scientific) to the same standard. Finally, we have validated BIA (total percent body fat) as a measure of body composition in a subset of our sample using hydrodensitometry ($r = 0.88$, $P < 0.001$, $n = 55$; standard error of estimate = 4.7, mean for percent body fat measured by BIA = 40.5%, by hydrodensitometry = 40.2%). Therefore, we used BIA derived estimates of body composition in all subsequent analyses.

Questionnaire information

Family members completed detailed questionnaires about their dietary and weight history (including type of diet, binging, purging, recent weight loss, age at onset of obesity) and exercise habits. In addition, they provided information on their physical and mental health, and hospitalizations (questionnaire available upon request).

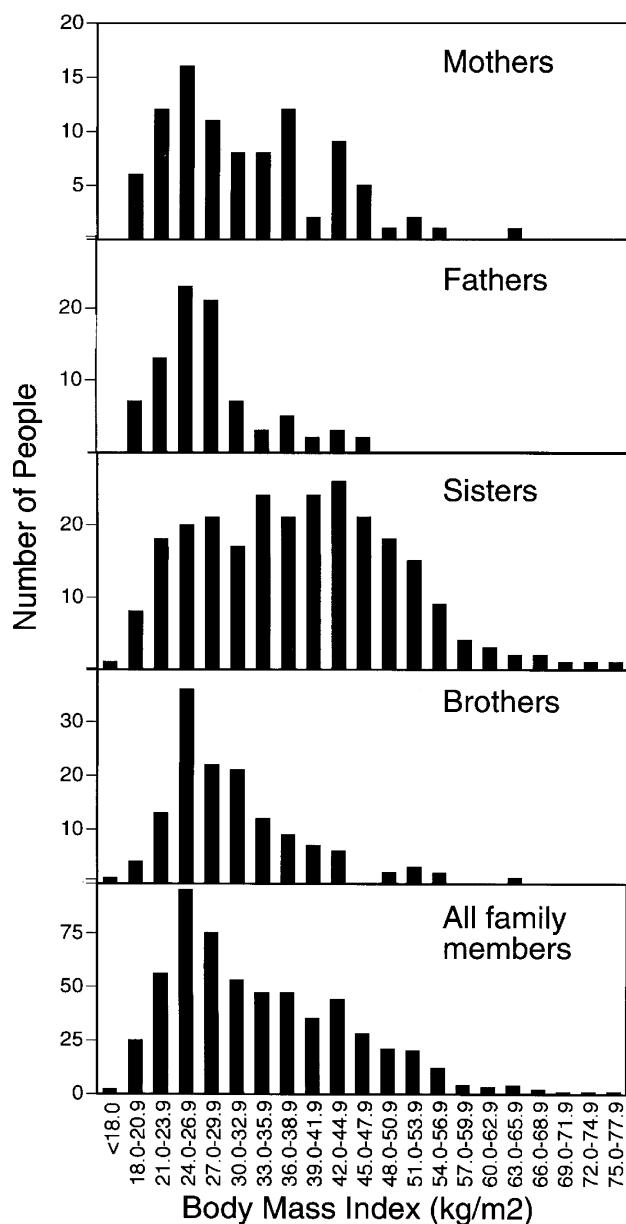
Data analysis

Descriptive statistics and between trait interclass-correlations were calculated in SPSS 6.1. Family correlations were computed using the FCOR routines in SAGE.²⁷ Correlation coefficients were tested to determine whether they were statistically different than zero. Waist-to-hip ratio (WHR) was calculated by dividing the circumference of the waist (cm) by the circumference of the hips (cm). A combined measure of skinfold thickness was created by averaging the three replicate measurements for each skinfold site and summing the four average values for each skin-

fold site. This value was truncated at the upper tail, as some of the obese subjects had skinfolds in excess of the capacity of the calipers. When this occurred, the value of the maximum extension of the calipers was used. The ratio of subcutaneous fat in the trunk to that in the extremities is obtained by dividing the sum of average skinfold value for the biceps and triceps by the sum of the average skinfold value for the subscapular and suprailiac areas (extremities/trunk).

Results

Age and vital status


Parents were generally in their mid-sixties (mothers = 65 ± 9 y, range = 46–82 y, $n = 84$; fathers = 66 ± 10 y, range = 50–84 y, $n = 56$) and siblings were in their late thirties (sisters = 39 ± 8 y, range = 17–59 y, $n = 240$; brothers = 38 ± 8 y, range = 22–55 y, $n = 107$). From the 94 families, 37 fathers, 10 mothers and 40 brothers and 19 sisters died prior to their family's induction into the study. However, all families had at least one living parent at the time of assessment. Parental age was computed using living parents and does not include the age at death for deceased parents. The total number of siblings was 406, yielding an average sibship size of 4.3, with a range of 2–13. Siblings who were determined to be half-siblings based on genotyping were not included in the total.

Direct assessment, self-report, self-measure and informant report

Of 594 subjects, 383 (64%) were directly measured by our research interviewers (70 mothers, 32 fathers, 196 sisters, 85 brothers); 84 (14.1%) were self-measured (12 mothers, 12 fathers, 44 sisters and 16 brothers; and 127 (21.7%) were based on informant reports (12 mothers, 50 fathers, 19 sisters and 46 brothers). DNA samples were obtained on 467 family members (79%).

Obesity and leanness

Because of the multiple selection criteria, there was no single proband in these families. A few families recruited early in the study did not meet current study criteria. In 86 of 94 families at least one sibling had a $\text{BMI} \geq 40$ (91%). Whereas all but the first few families met full eligibility criteria based on a telephone screen of family members, only approximately half (44 families, 47%) met all criteria following direct assessment. The most common reason for not meeting full criteria was the initial under-reporting of weight by the non-obese relatives. Even with this systematic under-reporting, the range of obesity phenotypes in these families is very large, 59 BMI units (kg/m^2) between the leanest and heaviest person in the study, and 27 BMI units, on average, within families.

Figure 1 Distribution of body mass index (BMI, kg/m^2) for family members.

The distributions of BMI, arranged by gender and generation in Figure 1, clearly show several trends. The most severely obese individuals are usually women in the sibling generation. The sampling requirements, that families must have both obese and lean family members, produced a bimodal distribution of BMI, with high overall mean values and a marked skewing toward extreme obesity. The means, variances and ranges of the measures related to body size, fatness and fat patterning, arranged by gender and generation, are presented in Table 1. The means, variances and ranges of the measures are consistent with the distributions of BMI. The families include many extremely obese individuals of both genders and generations, and there is a wide range of obesity from very lean to very obese.

Correlations among phenotypes are presented in Table 2. There were moderate to high correlations

among all individual measures and indices of body fat. BMI, percent fat, sum of skinfolds and body circumference measures were all highly correlated for women and somewhat less so for men. In general, height was uncorrelated with obesity measures in both women and men. Waist to hip ratios (Whr) and the proportion of fat on the extremities vs the trunk (Ext/Trnk) were not correlated with overall obesity, particularly for women.

The correlations among family members for measures of obesity, stature, and fat patterning are given in Table 3. Because of the complex ascertainment scheme requiring that some relatives within each family must be lean and other relatives must be obese (based on BMI), family correlations for BMI are not reported. For several other obesity measures, within family variance was high relative to differences among families. Therefore, there were no significant correlations between parents and offspring or among siblings for obesity measures closely related to the ascertainment (i.e., BIA, fat mass (FM), and sum of skin folds, and waist and hip circumferences). However, there were significant family correlations for measures of regional fat and fat distribution (i.e., WHR and biceps, triceps, subscapular and suprailiac skinfold thickness, and the ratio of extremity fatness relative to trunk fatness). We also examined family correlations, restricting analyses to family members with $\text{BMI} \geq 30$ (analyses not shown). There were significant correlations between parents and offspring for sum of skin folds and waist circumference and among siblings for BIA, sum of skin folds and waist, hip, and abdomen circumferences. The strongest correlations were between mothers and daughters.

Age at onset

Extreme obesity of subjects in this sample usually began early in life. Forty-two percent of individuals with $\text{BMI} \geq 40$ reported onset of obesity during childhood (by age 10), 22% in adolescence (ages 11–19), and 36% in adulthood (age ≥ 20). For individuals with BMI between 30 and 40, the percentages were 31%, 16% and 53%, respectively. Mildly obese individuals ($27 < \text{BMI} < 30$) reported much later onsets, with 11%, 14% and 74%, respectively, in childhood, adolescence and adulthood (Figure 2). This negative association between severity of obesity and age of onset was highly significant ($\chi^2_{(4)} = 18.73$, $P = 0.0009$, Mantel-Hansel Test of linear association ($1) = 17.29$, $P = 0.00003$; Pearson correlation ($n = 255$) = -0.39 , $P < 0.00001$). Among obese family members, self-reported age at onset of obesity was significantly correlated (parent offspring, $r = 0.16$, $n = 126$, $P < 0.05$; sibling, $r = 0.22$, $n = 140$, $P < 0.01$).

Discussion

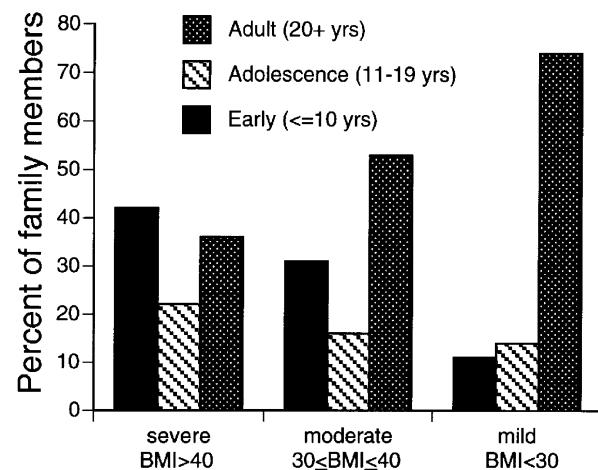
We ascertained families having multiple extremely obese and lean individuals. Selecting families in this

Table 1 Measures of obesity, stature, and body fat distribution in human families selected for linkage studies

Measure	Mothers					Fathers				
	Mean	s.d.	Min	Max	n	Mean	s.d.	Min	Max	n
Weight	85.2	24.5	47.0	165.4	94	87.2	20.0	54.5	159.1	92
BMI	32.7	9.4	19.8	65.8	94	28.1	6.3	19.6	47.6	92
%fat	45.0	8.4	22.1	60.6	70	31.3	7.7	16.9	52.1	31
Skinfold thickness										
Bicep	30.3	14.6	2.5	67.0	70	18.4	10.6	5.0	39.3	33
Tricep	33.2	11.7	9.5	67.0	70	21.1	9.4	6.0	44.3	33
Sub-scapular	36.4	14.2	5.0	67.0	70	29.0	13.0	7.0	66.0	33
Suprailiac	33.0	14.4	5.0	67.0	70	32.7	13.3	9.0	67.0	33
Sum skinfold	133.0	49.6	25.5	242.0	70	101.3	40.2	28.0	208.3	33
Circumferences										
Waist	103.2	18.9	67.5	154.0	75	102.8	12.9	81.0	128.5	33
Hip	119.9	19.8	84.5	174.0	75	109.8	14.2	91.9	141.0	33
Abdomen	114.8	20.5	80.0	173.5	75	107.2	15.6	84.8	138.8	33
Height	161.6	6.6	141.5	175.3	94	176.3	7.6	156.0	198.1	92
Body fat distribution										
Waist/Hip	0.9	0.1	0.7	1.1	75	0.9	0.1	0.9	1.1	33
Trunk/Extremity	1.0	0.2	0.5	1.5	70	0.7	0.2	0.3	1.1	33
	Sisters					Brothers				
Weight	106.8	32.5	49.2	207.7	259	99.6	28.3	52.3	206.5	145
BMI	38.9	11.6	16.8	76.2	259	31.2	8.1	18.0	64.8	145
%fat	45.8	8.5	15.1	62.4	190	30.0	9.1	10.2	46.4	82
Skinfold thickness										
Bicep	37.3	13.6	5.3	67.0	197	22.1	11.5	4.2	56.3	83
Tricep	41.0	12.2	2.7	67.0	196	24.2	10.6	6.7	62.5	83
Sub-scapular	46.0	14.7	6.3	67.0	196	35.0	14.5	10.3	70.0	83
Suprailiac	42.8	13.8	6.3	67.0	196	45.2	14.6	11.7	67.0	82
Sum skinfold	167.3	48.5	32.3	254.0	194	126.8	43.5	37.3	248.5	82
Circumferences										
Waist	111.8	22.8	64.0	224.8	205	108.6	20.3	73.1	167.5	87
Hip	132.3	23.8	75.0	217.0	204	113.4	19.6	80.9	175.0	87
Abdomen	123.8	25.5	65.0	209.0	205	112.8	21.5	76.5	177.0	85
Height	165.9	7.8	148.0	195.6	259	178.4	8.0	152.4	197.6	146
Body fat distribution										
Waist/Hip	0.84	0.08	0.63	1.21	204	0.96	0.08	0.78	1.35	87
Trunk/Extremity	0.90	0.19	0.41	1.69	194	0.59	0.18	0.17	1.09	82

BMI = body mass index, weight (kg), BMI (kg/m^2), bicep (mm), tricep (mm), subscapular (mm), suprailiac (mm), waist (cm), hip (cm), abdomen (cm), height (cm), waist/hip = ratio HR of waist circumference divided by hip circumference, extremity/trunk = the sum of the skinfold thickness from the extremities (bicep and tricep) divided by the sum of skinfold measurements taken on the trunk (subscapular and suprailiac).

Table 2 Correlations between obesity, stature and body fat patterns in female (upper) and male (lower) family members


Measure	Weight	BMI	%fat	FM	FFM	Bic	Tric	Sub	II	Sum	Waist	Hips	Abdo	Height	WHR	Ext/Trnk	
Weight	0.95	0.81	0.98	0.90	0.73	0.75	0.77	0.64	0.64	0.80	0.84	0.93	0.87	0.23	0.03	-0.01	
BMI	0.94	0.83	0.96	0.84	0.77	0.78	0.78	0.64	0.64	0.82	0.85	0.94	0.89	-0.06	0.05	0.03	
% fat	0.77	0.78	0.89	0.53	0.69	0.72	0.77	0.61	0.77	0.77	0.83	0.81	0.05	0.07	-0.05		
FM	0.96	0.94	0.90		0.80	0.72	0.74	0.77	0.64	0.79	0.83	0.94	0.88	0.22	0.01	-0.03	
FFM	0.90	0.81	0.48	0.77		0.64	0.63	0.66	0.58	0.69	0.70	0.80	0.73	0.36	-0.03	-0.06	
Biceps	0.63	0.68	0.59	0.65	0.48		0.83	0.77	0.69	0.91	0.65	0.72	0.66	0.01	0.03	0.23	
Triceps	0.59	0.62	0.59	0.62	0.43	0.70		0.78	0.69	0.91	0.69	0.76	0.70	0.01	0.05	0.22	
Subscap	0.74	0.77	0.71	0.77	0.58	0.65	0.66		0.77	0.92	0.76	0.79	0.77	0.11	0.13	-0.24	
Suprail	0.66	0.60	0.64	0.67	0.56	0.58	0.52	0.74		0.87	0.61	0.66	0.62	0.10	0.05	0.38	
Sum skin	0.78	0.78	0.74	0.80	0.61	0.84	0.81	0.91	0.86		0.75	0.81	0.76	0.06	0.07	-0.06	
Waist	0.92	0.94	0.81	0.92	0.76	0.64	0.57	0.74	0.62	0.76		0.88	0.90	0.08	0.46	-0.09	
Hips	0.92	0.93	0.80	0.94	0.76	0.64	0.60	0.73	0.59	0.75	0.91		0.94	0.10	-0.01	-0.05	
Abdomen	0.95	0.95	0.84	0.96	0.78	0.66	0.61	0.77	0.65	0.79	0.95	0.95		0.08	-0.16	-0.09	
Height	0.37	0.05	0.19	0.31	0.52	0.03	0.06	0.14	0.38	0.20	0.20	0.22	0.23		-0.03	-0.14	
WHR	0.18	0.20	0.19	0.13	0.12	0.12	0.06	0.16	0.18	0.16	0.40	-0.02	0.20	-0.02		-0.07	
Ext/Trnk	0.00	0.08	0.03	0.01	-0.06	0.44	0.51	-0.08	-0.28	0.11	0.03	0.06	0.02	-0.23		-0.04	

Correlations between obesity, stature, bone breadth and body fat patterns in female (upper, above the identity line) and male (lower, below the identity line) family members. The number of observations used to compute the correlations for women ranged from 253–353, and for men ranged from 105–238. Because of the large sample size, most correlations were greater than zero ($P < 0.05$) and are given in regular text. Correlations not significantly greater than zero are given in **bold**. BMI = body mass index; % fat = percentage fat; FM = fat mass; FFM = fat-free mass; Subscap = subscapular skinfold thickness; Suprail = suprailiac skinfold thickness; Sum skin = summed value of all four skinfold thickness (bicep (Bic), tricep (Tric), subscapular (Sub) and suprailiac (II)); WHR = waist to hip ratio; Ext/Trnk = the sum of the skinfold thickness from the extremities (bicep and tricep) divided by the sum of skinfold measurements taken on the trunk (subscapular and suprailiac).

Table 3 Inter- and intra-class correlations among family members for obesity measures, stature, and body fat distribution

Type	Weight	%fat	FM	FFM	Bic	Tric	Sub	II	Sum	Waist	Hips	Abdo	Height	WHR	E/T
Par	-0.32	-0.10	-0.15	0.25	0.18	0.18	0.29	0.32	0.20	0.00	-0.14	-0.12	0.11	0.03	0.55
P-O	<u>0.09</u>	0.03	0.00	0.09	0.23	0.29	0.05	0.21	0.16	0.08	-0.01	0.00	0.28	0.24	0.31
Sib	0.02	0.01	-0.02	<u>0.07</u>	<u>0.10</u>	<u>0.13</u>	0.08	<u>0.18</u>	<u>0.07</u>	0.03	-0.03	0.00	<u>0.15</u>	<u>0.23</u>	0.26
M-Da	0.05	-0.08	-0.06	0.04	0.31	0.26	0.03	0.14	0.16	0.06	-0.09	-0.07	0.40	0.37	0.32
M-Son	0.01	0.10	0.03	0.18	<u>0.07</u>	<u>0.36</u>	0.06	0.32	0.18	0.15	0.00	0.04	0.23	0.20	0.22
F-Da	<u>0.20</u>	0.17	<u>0.21</u>	<u>0.08</u>	0.29	<u>0.33</u>	0.07	0.11	0.16	0.08	0.16	0.09	<u>0.25</u>	-0.05	0.36
F-Son	0.10	0.19	<u>0.03</u>	0.13	-0.07	0.14	0.03	0.49	0.12	0.04	0.13	0.06	<u>0.21</u>	0.04	0.33
S-S	-0.03	-0.04	-0.06	0.01	0.15	0.07	0.15	0.12	0.06	0.03	-0.05	0.00	<u>0.16</u>	0.27	0.31
S-B	0.06	0.01	-0.01	0.10	<u>0.06</u>	<u>0.16</u>	-0.07	0.20	0.03	0.00	-0.03	-0.02	<u>0.17</u>	<u>0.15</u>	0.26
B-B	0.05	0.15	0.08	0.09	0.05	<u>0.30</u>	0.33	<u>0.36</u>	<u>0.27</u>	0.12	0.09	-0.02	<u>0.08</u>	<u>0.28</u>	0.08

Par = parent-parent; P-O = parent-offspring; Sib = sibling; M-Da = mother-daughter; M-Son = mother-son; F-Da = father-daughter; F-Son = father-son; S-S = sister-sister; S-B = sister-brother; B-B = brother-brother. Significant deviations from 0.0 are underlined. The number of observations used to calculate the inter- and intra-class correlations for the parent-parent ranged from 24-92; parent-offspring, 299-803; sibling, 323-814; mother-daughter, 65-259; mother-son, 61-146; father-daughter, 61-255; father-son 30-143; sister-sister, 144-292; sister-brother 144-399; brother-brother, 33-123. %fat = percent body fat; FM = fat mass (kg); FFM = fat-free mass; Bic = bicep skinfold; Tric = tricep skinfold; Sub = subscapular skinfold; II = supriliac skinfold; Sum = sum of skinfolds; Waist = circumference; Abdo = abdomen; WHR = waist to hip ratio; E/T = extremities to trunk ratio.

Figure 2 Age of obesity onset and body mass index (BMI, kg/m²) of family members.

manner resulted in a wide range and bimodal distribution of obesity phenotypes and a large number of sibling pairs who were concordant and discordant for extreme obesity and leanness. The use of sibling pairs concordant and discordant for extreme phenotypes has been proposed as a powerful method for mapping genes for complex traits.^{14,28} For example, it has been shown that study designs which sample sibling pairs from the upper and lower deciles require 10–40 times fewer sibling pairs to attain the same statistical power as unselected sibling pairs.^{14,29} The theoretical advantages and practical difficulties of recruitment of sibling pairs extremely discordant for weight have recently been discussed by Allison,³⁰ who noted that extremely discordant sibling pairs are rare and have an increased frequency of covert non-paternity. Concordant sibling pairs with extreme and therefore rare phenotypes are also labor-intensive to recruit. These difficulties have been addressed in the current study design. By sampling nationally, we were able to screen over 2000 families, and locate 94 which provided both concordant and discordant pairs with extreme phenotypes. These concordant and discordant

sibling pairs should provide substantial power for linkage and association studies.

Several linkage studies are underway; however, most studies were not specifically designed to maximize power for identifying genes for obesity. Some utilized samples recruited for studies of other disorders^{31–35} or were unselected for obesity measures.^{36,37} One study sampled a single large pedigree having multiple, extremely obese individuals.³⁸ That large family design has some of the characteristics of the current study, including an extreme range and bimodality of obese phenotypes. To our knowledge, only one group of investigators has selected sibling pairs based on extreme obesity measures.³⁹ That study ascertained affected sibling pairs, but in about 40% of cases, the sibling pairs had no parental DNA available. As a result, that study design does not take full advantage of the strengths of discordant sibling pairs or of identity-by-descent allele sharing, and thus should be statistically less powerful.

We only selected families having some members who were extremely dissimilar in BMI, and these selection criteria resulted in high within-family variability for BMI and closely related measures. This sampling design should maximize gene segregation within families but also suppresses family correlations, which are based on variation among families.

Previous studies have suggested that patterns of body fat distribution are influenced by different genes from those which influence overall adiposity,^{40–47} and the current data are consistent with that hypothesis. We have a highly selected group of families whose familial correlation for overall adiposity is near zero, but the familial correlations for body fat distribution are highly significant. For example, we observed substantial family correlations for body shape as measured by WHR, the relative thickness of skinfold measures for each body site, and the proportion of fat on the arms vs the amount of fat on the trunk. Genes for these phenotypes may segregate independently of obesity within these families.

The pattern of phenotype correlations (for example), the correlation between BMI and percent body fat or body circumferences) observed in this sample is similar to patterns reported previously for obesity measures.⁴⁸⁻⁵¹ The range of phenotypes may in part account for the high correlations relative to other studies. There were few individuals in the normal range, where the correlation between BMI and percent fat tends to be lower than for subjects with mild or moderate obesity.⁵² Consistent with earlier reports, the correlation between BMI and percent body fat was low in extremely obese subjects.⁵³⁻⁵⁵

A common characteristic of genetically influenced diseases is that they often begin early in life. Early onset may also be an indicator of high genetic loading.⁵⁶ Almost half of the extremely obese individuals in the current study had a very early age at onset (onset age < 10 y). In a different study which ascertained families through a single extremely obese proband, rates of early-onset obesity were much lower than the rates in this study (12% compared with 42% in the current report⁵⁷). The high rates of early-onset obesity seen in these family members may reflect the increased influence of genes in determining the phenotypes of these multiplex families. The age of obesity onset also appears to be familial, with early or late-onset obesity clustering within families. The early-onset portion of our sample may be particularly useful for linkage and association studies.

In summary, obesity is a multigenic trait, and special methods and sampling designs are needed for gene identification. Few family collections have been selected exclusively for linkage studies of obesity, and our collection utilizes a sampling strategy designed to optimize the likelihood that obesity genes are segregating within families. Families with extremely obese siblings with a lean parent and at least one lean sibling are highly informative for genetic linkage studies as these families should provide a large number of sibling pairs concordant and discordant for extreme obesity. In addition, a high proportion of early onset obesity in this study may increase the genetic loading.

Acknowledgements

The work described in this paper was supported in part by grants from the National Institutes of Health (R01-DK44073 and R01-DK48095) to RAP. The SAGE computer package was supported by USPHS Resource Grant P41-RR03655. The technical assistance of Corrine Cather, Christa Alberry Mayr, Elizabeth Joe, Kruti Quazi and Barry Goldman are gratefully acknowledged.

References

- 1 Price RA, Cadoret RJ, Stunkard AJ, Troughton E. Genetic contribution to human fatness: an adoption study. *Am J Psychiat* 1987; **144**: 1003-1008.
- 2 Reed DR, Bradley EC, Price RA. Obesity in families of extremely obese women. *Obes Res* 1993; **1**: 167-172.
- 3 Stunkard AJ, Foch TT, Hrubec Z. A twin study of human obesity. *JAMA* 1986; **256**: 51-4.
- 4 Price RA, Gottesman II. Body fat in identical twins reared apart: roles for genes and environments. *Behav Gen* 1991; **21**: 1-7.
- 5 Grilo CM, Pogue-Geile MF. The nature of environmental influences on weight and obesity: a behavior genetic analysis. *Psychol Bull* 1991; **110**: 520-537.
- 6 Vogler GP, Sørensen TI, Stunkard AJ, Srinivasan MR, Rao DC. Influences of genes and shared family environment on adult body mass index assessed in an adoption study by a comprehensive path model. *Int J Obes* 1995; **19**: 40-45.
- 7 Pérusse L, Chagnon TC, Dionne FT, Bouchard C. The human obesity gene map: the 1996 update. *Obes Res* 1997; **5**: 49-61.
- 8 Lander ES, Schork NJ. Genetic dissection of complex traits, *Science* 1994; **265**: 2037-2048.
- 9 Risch N, Merikangas K. The future of genetic studies of complex human diseases. *Science* 1996; **273**: 1516-1517.
- 10 Risch N. Linkage strategies for genetically complex traits. I, Multilocus models. *Am J Hum Genet* 1990; **46**: 222-8.
- 11 Allison DB, Faith MS, Nathan JS. Risch's lambda values for human obesity. *Int J Obes* 1996; **20**: 990-999.
- 12 Lee JH, Reed DR, Price RA. Familial risk ratios for extreme obesity: implications for mapping human obesity genes. *Int J Obes* 1997; **21**: 935-940.
- 13 Price RA. *The case for single gene effects on human obesity*. CRC Press: Boca Raton, 1994.
- 14 Risch N, Zhang H. Extreme discordant sib pairs for mapping quantitative trait loci in humans. *Science* 1995; **268**: 1584-89.
- 15 Buemann B, Tremblay A, Bouchard C. Social class interacts with the association between macronutrient intake and subcutaneous fat. *Int J Obes* 1995; **19**: 770-775.
- 16 Sobal J, Stunkard AJ. Socioeconomic status and obesity: a review of the literature. *Psychol Bull* 1989; **105**: 260-75.
- 17 Jeffery RW, Forster JL, Folsom AR, et al. The relationship between social status and body mass index in the Minnesota Heart Health Program. *Int J Obes* 1989; **13**: 59-67.
- 18 Nieto-Garcia FJ, Bush TL, Keyl PM. Body mass definitions of obesity: sensitivity and specificity using self-reported weight and height. *Epidemiology* 1990; **1**: 146-152.
- 19 Palta M, Prineas RJ, Berman R, Hannan P. Comparison of self-reported and measured height and weight. *Am J Epidemiol* 1982; **115**: 223-230.
- 20 Rimm EB, Stampfer MJ, Colditz GA, et al. Validity of self-reported waist and hip circumferences in men and women. *Epidemiology* 1990; **1**: 466-473.
- 21 Stunkard AJ, Albaum JM. The accuracy of self-reported weights. *Am J Clin Nutr* 1981; **34**: 1593-1599.
- 22 Weaver TW, Kushi LH, McGovern PG, et al. Validation study of self-reported measures of fat distribution. *Int J Obes* 1996; **20**: 644-650.
- 23 Wing RR, Epstein LH, Ossip DJ, LaPorte RE. Reliability and validity of self-report and observers' estimates of relative weight. *Addict Behav* 1979; **4**: 133-140.
- 24 Reed DR, Price RA. Estimates of the heights and weights of family members: accuracy of informant reports. *Int J Obes* 1998; Subrn. Hed..
- 25 Coates TJ, Jeffery RW, Wing RR. The relationship between a person's relative body weights and the quality and quantity of food stored in their homes. *Addict Behav* 1978; **3**: 179-184.
- 26 Sørensen TI, Stunkard AJ, Teasdale TW, Higgins MW. The accuracy of reports of weight: Children's recall of their parents' weight 15 years earlier. *Int J Obes* 1983; **7**: 115-122.
- 27 SAGE *Statistical analysis for genetic epidemiology*, Case Western Reserve University: Cleveland, 1996.
- 28 Carey G, J. Williamson : Linkage analysis of quantitative traits: increased power by using selected samples. *Am J Hum Genet* 1991; **49**: 786-796.
- 29 Risch N, Zhang H. Mapping quantitative trait loci with extreme discordant sib pairs: sampling considerations. *Am J Hum Genet* 1996; **58**: 836-843.

30 Allison DB.: The use of discordant sibling pairs for finding genetic loci linked to obesity: practical considerations. *Int J Obes* 1996; **20**: 553–560.

31 Bray MS, Boerwinkle E, Hanis CL: OB gene not linked to human obesity in Mexican American affected sib pairs from Starr County, Texas. *Human Genet* 1996; **98**: 590–595.

32 Comuzzie AG, Blangero J, Mahaney MC, Mitchell BD, Hixson JE, Samollow PB, Stern MP, MacCluer JW: Major gene with sex-specific effects influences fat mass in Mexican-Americans. *Genetic Epidemiology* 1995; **12**: 475–488.

33 Comuzzie A, Hixson J, Almasy L, et al.: A major quantitative trait locus determining serum leptin levels and fat mass is located on human chromosome 2. *Nature* 1997; **385**: 273–276.

34 Stirling B, Cox NJ, Bell GI, et al.: Identification of microsatellite markers near the human ob gene and linkage studies in NIDDM-affected sib pairs. *Diabetes* 1997; **44**: 999–1001.

35 Wilson AF, Elston RC, Tran LD, Siervogel RM.: Use of the robust sib-pair method to screen for single-locus multiple-locus, and pleiotropic effects: application to traits related to hypertension. *Am J Hum Genet* 1991; **48**: 862–872.

36 Borecki IB, Rice T, Perusse L, Bouchard C, Rao DC.: An exploratory investigation of genetic linkage with body composition and fatness phenotypes: the Quebec family study. *Obes Res* 1994; **2**: 213–219.

37 Paganini-Hill A, AO AOM, Spence MA.: The S-leut anthropometric traits: genetic analysis. *Am J Phys Anth* 1981; **55**: 55–67.

38 Hunt SC, Williams RR, Adams TD.: Biochemical and anthropometric characterization of morbid obesity in a large Utah pedigree. *Obes Res* 1995; **3** (Suppl): 165s–172s.

39 Clement K, Garner C, Hager J, Philippi A, LeDuc C, Carey A, Harris TJ, Jury C, Cardon LR, Basdevant A, Demenais F, Guy-Grand B, North M, Frogel P: Indication for linkage of the human OB gene region with extreme obesity. *Diabetes* 1996; **45**: 687–690.

40 Borecki IB, Rice T, Pérusse L, Bouchard C, Rao DC.: Major gene influence on the propensity to store fat in trunk versus extremity depots: evidence from the Québec Family Study. *Obes Res* 1995; **3**: 1–8.

41 Bouchard C, Rice T, Lemieux S, et al.: Major gene for abdominal visceral fat area in the Québec Family Study. *Int J Obes* 1996; **20**: 420–427.

42 Cardon LR, Carmelli D, Fabsitz RR, Reed T.: Genetic and environmental correlations between obesity and body fat distribution in adult male twins. *Hum Biol* 1994; **66**: 465–479.

43 Donahue RP, Prineas RJ, Gomez O, Hong CP.: Familial resemblance of body fat distribution: the Minneapolis Children's Blood Pressure Study. *Int J Obes* 1992; **16**: 161–167.

44 Hasstedt SJ, Ramirez ME, Kuida H, Williams RR.: Recessive inheritance of a relative fat pattern. *Am J Hum Genet*, 1989; **45**: 917–925.

45 Ramirez ME.: Familial aggregation of subcutaneous fat deposits and the peripheral fat distribution pattern. *Int J Obes* 1993; **17**: 63–68.

46 Rice T, Bouchard C, Pérusse L, Rao DC.: Familial clustering of multiple measures of adiposity and fat distribution in the Quebec Family Study: a trivariate analysis of percent body fat, body mass index, and trunk-to-extremity skinfold ratio. *Int J Obes* 1995; **19**: 902–908.

47 Sellers TA, Drinkard C, Rich SS, et al.: Familial aggregation and heritability of waist-to-hip ratio in adult women: the Iowa Women's Health Study. *Int J Obes* 1994; **18**: 607–613.

48 Gallagher D, Visser M, Sepulveda D, et al.: How useful is body mass index for comparison of body fatness across age, sex and ethnic groups?. *Am J Epidemiol* 1996; **143**: 228–239.

49 Himes JH, Bouchard C, Pheley AM.: Lack of correspondence among measures identifying the obese. *Am J Prev Med* 1991; **7**: 107–11.

50 Jackson AS, Pollock ML, Graves JE, Mahar MT.: Reliability and validity of bioelectrical impedance in determining body composition. *J Appl Physiol* 1988; **64**: 529–534.

51 Mueller WH, Malina RM.: Relative reliability of circumferences and skinfolds as measures of body fat distribution. *Am J Phys Anth* 1987; **72**: 437–439.

52 Wellens RI, Roche AF, Khamis HJ, Jackson AS, Pollock ML, Siervogel RM: Relationships between the body mass index and body composition. *Obes Res* 1996; **4**: 35–44.

53 Deurenberg P.: Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. *Am J Clin Nutr* 1996; **64** (Suppl): 449S–452S.

54 Kushner RF, Haas A.: Estimation of lean body mass by bioelectrical impedance analysis compared to skinfold anthropometry. *Eur J Clin Nutr* 1988; **42**: 101–106.

55 Price RA: Bioelectrical impedance analysis in body composition measurement: National Institutes of Health Technology Assessment Conference Statement. *Am J Clin Nutr* 1996; **64** (Suppl): 524S–532S.

56 Price RA, Stunkard AJ, Ness R, et al.: Childhood onset (age < 10) obesity has high familial risk. *Int J Obes* 1990; **14**: 185–195.

57 Adams T, Hunt S, Mason LA, Ramirez ME, Fisher GA, Williams RR: Familial aggregation of morbid obesity. *Obes Res* 1993; **1**: 261–270.