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Abstract

We examined the contribution of candidate genes for Alzheimer’s disease (AD) on Chromosome
21 and other chromosomes to differences in Af peptide levels in a cohort of adults with DS, a
population at high risk for AD. Participants were 254 non-demented adults with Down syndrome,
30-78 years of age. Genomic DNA was genotyped using an Illumina GoldenGate custom array.
We used linear regression to examine differences in levels of AP peptides associated with the
number of risk alleles, adjusting for age, sex, level of intellectual disability, race/ethnicity and the
presence of the APOE ¢4 allele. For AB42 levels, the strongest gene-wise association was found
for a SNP on CAHLMZ; for AB40 levels the strongest gene-wise associations were found for SNPs
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in IDE and SOD1, while the strongest gene-wise associations with levels of the AB42/Ap40 ratio
were found for SNPs in SORCSL. Broadly classified, variants in these genes may influence APP
processing (CALHM1, IDE), vesicular trafficking (SORCSL), and response to oxidative stress
(SOD1).
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1. INTRODUCTION

Amyloid 8 (AB) plays a critical role in the development of Alzheimer’s disease (AD).
Amyloid p peptides AB40 and AB42 are the two major species generated by sequential
proteolytic cleavage by  and vy secretases of the amyloid precursor protein (APP) (Selkoe,
2001). Brain levels of AB42 increase early in the development of dementia, (Cummings and
Cotman, 1995, Naslund, et al., 2000) and studies of A peptides in cerebrospinal fluid (CSF)
have consistently shown that declining or low levels of AB42 and the AB42/ABA40 ratio and
high concentrations of tau in patients with mild cognitive impairment (MCI) are associated
with higher brain A load (Fagan, et al., 2006, Fagan, et al., 2009, Fagan, et al., 2007) and
predict conversion to AD (Blennow and Hampel, 2003, Hansson, et al., 2007, Jack, et al.,
2013). Studies of plasma AP have shown less consistent relationships to risk of AD than
studies of CSF AP and inconsistent correlations between plasma and CSF AP peptides
(Toledo, et al., 2013). Elevated plasma AB42 levels have been proposed as a risk factor
related to both age and risk for AD. Thus, although deposition of AB42 in brain tissue is
unlikely to result directly from increased plasma levels, both brain and plasma levels may
reflect a general alteration in AP processing and individual differences in plasma Ap42
peptide level may serve as a biological marker of risk, sensitive to the development and
progression of AD.

Individuals with Down syndrome (DS) have increased risk for Alzheimer’s disease (AD)
neuropathology and clinical dementia, which has been attributed to triplication and
overexpression of the gene for amyloid precursor protein, APP, located on chromosome 21
(Head, et al. 2012), which leads to elevated levels of Ap peptides from an early age (Conti,
etal., 2010, Head, et al., 2011, Mehta, et al., 1998, Schupf, et al., 2001, Teller, et al., 1996,
Tokuda, et al., 1997). In adults with DS, high initial levels of plasma AB42, are associated
with increased risk for AD (Coppus, et al., 2012, Head, et al., 2011, Jones, et al., 2009,
Matsuoka, et al., 2009, Schupf, et al., 2007, Schupf, et al., 2001). However, there are large
individual differences in initial Ap peptide levels and a wide range of age at onset of AD
within this population, suggesting a more complex underlying mechanism and a role for
additional risk factors.

The factors that influence individual differences in plasma A peptides are not well
understood. Genetic and environmental risk factors may influence the development of AD
by increasing production of AP or by reduced clearance or excess deposition of Ap.
Compared with individuals without DS, adults with DS could also be at increased risk for
AD through triplication and overexpression of genes on chromosome 21 other than APP,
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and genes on other chromosomes may modify this risk. Multiple genome-wide association
studies (GWAS) have identified potential genetic pathways for AD (Bertram and Tanzi,
2012, Hollingworth, et al., 2011, Jun, et al., 2010, Lambert, et al., 2009a, Lambert, et al.,
2013, Naj, et al., 2011) but only a few studies have examined their relation to Ap levels
(Bali, et al., 2012, Chouraki, et al., 2014, Kim, et al., 2011, Miners, et al., 2010, Reitz, et al.,
2011b). Reasoning that individuals with DS may be a population group with increased
sensitivity for revealing such pathways, in this study we examined the relation of candidate
genes for AD to baseline levels of AP peptides, AB42, Ap40 and the AB42/ApB40 ratio in
older adults with DS. The aim was to identify genetic factors associated with individual
differences in level of Ap peptides which might act as biomarkers of risk for AD.

2. METHODS
2.1 Study population

The study sample included 254 members of a community-based cohort of adults with
confirmed DS, non-demented at their initial examination. Dementia status at baseline was
classified using data from all available sources reviewed during a consensus conference.
Following recommendations of the AAMR-IASSID Working Group for the Establishment
of Criteria for the Diagnosis of Dementia in Individuals with Developmental Disability
(Aylward, et al., 1997, Burt and Aylward, 2000). Participants were classified into 2 groups:

1) dementia, if there was a history of progressive memory loss, disorientation, and
functional decline over a period of at least 1 year and if there were no other medical or
psychiatric conditions that might result in or mimic dementia present (e.g., untreated
hypothyroidism, stroke) and 2) without dementia, if they were without cognitive or
functional decline based on performance on neuropsychological assessments referenced to
level of intellectual disability tested in young adulthood, review of medical records and
interviews with informants (Silverman et al., 2004). Among participants who were non-
demented at baseline, we analyzed the relation of SNPS in candidate genes to AB levels
using plasma from the baseline visit (Schupf, et al., 2010) to identify genetics factors
associated with individual difference in levels of abeta peptides which might act as
biomarkers of risk. All individuals were 31 years of age and older (range 31-78) and resided
in New York, Connecticut, New Jersey or northern Pennsylvania. Participants were
recruited with the help of state and voluntary service provider agencies and were eligible for
inclusion in the present study if: (a) a family member or correspondent provided informed
consent, (b) he or she either provided consent or assent indicating willingness to participate,
and (c) he or she was willing and able to provide blood samples. 76.4% of the study sample
was female. The high frequency of females in the study sample reflects a focus in our
research program on the relationship between menopause and risk for dementia among
women with Down syndrome. Recruitment, informed consent and study procedures were
approved by the Institutional Review Boards of the New York State Institute for Basic
Research in Developmental Disabilities, Columbia University Medical Center, and the Johns
Hopkins University School of Medicine.
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2.2 Clinical Assessment

Assessments included evaluations of cognition and functional abilities, behavioral/
psychiatric conditions and health status. Cognitive function was evaluated with a test battery
designed for use with individuals varying widely in their initial levels of intellectual
functioning, as previously described (Silverman, et al., 2004). Structured interviews were
conducted with caregivers to collect information on adaptive behavior and medical history.
Past and current medical records were reviewed for all participants.

2.3 Plasma ABP B42 and Ap pp40

Participants were asked to provide a 10 ml venous non-fasting blood sample (K,EDTA
lavender-top tube) at each assessment cycle. Blood draws were done between 10 am and 4
pm. Plasma levels of AB42 and AB40 were measured blind to clinical status using a
combination of monoclonal antibody 6E10 (specific to an epitope present on 1-16 amino
acid residues of AB) and rabbit antisera R165 (vs. Ap42) and R162 (vs. AB40) in a double
antibody sandwich ELISA as previously described. (Mayeux, et al., 2003, Mehta, et al.,
1998, Schupf, et al., 2007). The detection limit for these assays was 5 pg/ml for AB40 and 10
pg/ml for AB42. Ap40 and Ap42 levels from each sample were measured twice using
separate aliquots. Reliability between measurements was substantial for both peptides (r=".
93. and r=.97 for AB40 and AB42, respectively, p<.001), and the mean of the two
measurements was used in statistical analyses.

2.4 Apolipoprotein E genotypes

Apolipoprotein E (APOE) genotyping employed standard PCR-RFLP methods using Hhal
(Cfol) digestion of an APOE genomic PCR product spanning the polymorphic (cys/arg) sites
at codons 112 and 158. Acrylamide gel electrophoresis was used to assess and document the
restriction fragment sizes (Hixson and Vernier, 1990). Participants were classified according
to the presence or absence of an APOE ¢4 allele.

Selection of Candidate Genes—An initial set of candidate genes included the top
candidate genes from the ALZGENE database (http://www.alzgene.org) and additional
positional candidate genes from published genome wide linkage and association studies. We
used SNAP (http://www.broadinstitute.org/mpg/snap/ldsearch.php) to identify genes within
the candidate regions. This process generated six candidates on chromosome 21 and 41
genes on other chromosomes. Candidate genes on chromosome 21 included the genes for
amyloid precursor protein (APP), famyloid converting enzyme-2 (BACEZ2), the Down
syndrome critical region-1 (DSCRL), runt-related transcription factor 1 (RUNXZ1), the
astrocyte-derived neurotrophic factor S1004, and CU/Zn superoxide dismutase (SOD-1).
Additional candidate genes were on chromosomes 1, 2, 6-11, 15, 17, 19, 20 and X (See
Supplemental Table 1 for the full list of genes). Figure 1 provides an overview of SNP
selection and SNP analysis performed in the 2-stage candidate gene study.

2.5 SNP Selection

We genotyped each gene with a sufficient number of SNPs to provide dense coverage
(r>~0.8), and the selected SNPs had a relatively high minor allele frequency (MAF>0.15).
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To identify tag SNPs in these genes, we applied the TAGGER program (de Bakker, 2009) to
a Caucasian population available from the HapMap dataset (http://
hapmap.ncbi.nim.nih.gov/). In addition, we used SNAP (http://www.broadinstitute.org/mpg/
snap/ldsearch.php) to check LD patterns across the genic region to ensure that the coverage
was comprehensive. For chromosome 21, 263 SNPS from the six genes had a median minor
allele frequency (MAF) of 0.30 and a median inter-marker distance of 1,914.5 base pairs.
For chromosomes other than 21, 1,110 SNPS, exclusive of APOE, from 41 genes, had a
median MAF of 0.30 and a median inter-marker distance of 1,955 base pairs. We present top
strands generated from the Illumina customized platform.

2.6 SNP Genotyping: Customized SNP array in trisomic samples

Genomic DNA was genotyped using an Illumina GoldenGate custom array. Clustering and
genotype calling of Chromosome 21 SNPS and non-Chr21 SNPs was performed using
GenomeStudio genotyping module v1.8 which supports polyploidy loci. For SNPs on
chromosome 21, the custom cluster option in GenomeStudio genotyping module v1.8 was
used to specify 4 clusters and the custom GType was used to display genotype calls for
polyploidy loci (AAA, AAB, ABB, or BBB). All genotype calls were inspected manually by
viewing SNP graph cluster plots. Figure 2 shows a typical cluster plot for one of the trisomy
SNPs tested (rs2830054). The minor allele was always coded as the risk allele.

2.7 Quality Control Assessment

Prior to allelic association analysis, we first checked the quality of SNP genotyping. Quality
scores were determined from allele cluster definitions for each SNP as determined by the
Illumina GenomeStudio Genotyping Module version 3.0 and the combined intensity data
from 100% of study samples. Genotype calls with a quality score (Gencall value) of =0.25
were considered acceptable. For chromosome 21, the average call rate was 98%. We
dropped SNPs with a call rate <90% (n=23) or SNPs that did not produce genotypes (n=9).
For chromosomes other than 21, the call rate for SNPs was 99%. A total of 11 SNPs were
dropped because they had GenTrain scores below threshold or had a call rate of < 98%.
After the filtering process, we analyzed 231 SNPs on chromosome 21 and 1099 SNPs from
chromosomes other than 21. As a further test of assay reliability, 15 randomly selected
samples were genotyped in duplicate. The concordance rates for genotyped SNPs in these
samples ranged from 91.8 to 100% for Chr 21 SNPs and from 95.2 to 99.6 for non-Chr 21
SNPs. We then conducted additional quality control (QC) assessments using PLINK
(Purcell, et al., 2007). We excluded SNPs with the following characteristics: missing
genotyping rate >5%; minimum allele frequency <1%; Hardy-Weinberg Equilibrium
(HWE) test [27] at a p-value <0.000001.

2.8. Population stratification

To adjust for population stratification, we applied the multidimensional scaling (MDS)
method as implemented in PLINK. Using all available SNPs that survived the QC process,
genetic similarity across individuals was estimated by computing identity by state (IBS). To
anchor and cross-check against individuals with known ethnic background, we also included
whites (n=165), Africans (n=165) and Asians (170) from the Hapmap database
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(www.hapmap.org). This analysis generated three distinct racial/ethnic clusters. These
clusters were included in the multivariate model to account for ancestry.

2.9. Covariates

Covariates included age, sex, level of intellectual disability, race/ethnicity clusters from
MDS analysis, and the presence or absence of an APOE €4 allele. Level of intellectual
disability was classified into two groups based on 1Q scores obtained before onset of
cognitive impairment due to onset of CMI or dementia: mild/moderate (1Q 35-70) and
severe/profound (1Q <35).

2.10. Statistical analyses

Linear regression was used to examine the relationship of potential confounders, including
age, sex, race/ethnicity clusters, level of intellectual disability and the presence of an APOE
€4 allele to peptide levels. To minimize penalties for multiple testing, we conducted a two-
stage analysis to identify SNPS that are associated with levels of amyloid Ap42 and AB40
(Figure 1). In Stage 1 (screening stage), using PLINK, we pruned SNPs to achieve a
variance inflation factor (VIF) of 1.43, which is equivalent to a pairwise r?<0.3. Using
PLINK, we evaluated the allelic association between a SNP and Ap42, AB40 and AB42/
AP40 levels using a linear regression model after adjusting for confounders. An additive
model was used based on the number of risk alleles. An empirical p-value was computed
using 10,000 permutations. In Stage 2 (fine mapping stage), we focused on candidate genes
where at least one SNP met an empirical p-value <0.05. To perform the fine mapping
analysis, we included all SNPs that were genotyped within that gene. We repeated the linear
regression model and, in addition, we computed adjusted p-values to correct for multiple
testing, as proposed by Benjamini and colleagues (Benjamini and Hochberg, 1995,
Benjamini and Yekutieli, 2001). The R statistical package (http://www.r-project.org/) was
used to compute adjusted p-values. For the three most promising genes from the single point
analysis (CALMH1 and Ap42, IDE and Ap40, SORCSL and AB42/AB40 ratio), we used
PLINK to conduct haplotype analysis with a 3-SNP sliding windows approach to identify
contiguous regions with significant association.

3. RESULTS

3.1

Valid genotypes were obtained for 254 participants for chromosome 21 genes, and for 219
participants for non-chromosome 21 genes. The demographic characteristics of the two
subsets of participants were comparable. For both subsets, mean age was 49.6 years, 76.4%
of the study sample was female, 56.7% had a mild or moderate level of intellectual disability
while the remainder had severe intellectual disability, and 90.6% of the sample was
Caucasian. The APOE ¢4 allele frequency was 11.3% (Table 1). Mean levels of AB peptides
were also comparable across both sets. Mean Ap42 level was 28.2 pg/ml (8.0-132.4) for the
254 participants with genotypes on Chromosome 21 and 27.3 pg/ml (8.0-110.7) for the 219
participants with genotypes on other chromosomes. Mean AB40 level was 156.0 pg/ml
(24.3-491.4) and the mean AB42/AB40 ratio was 0.21 pg/ml (0.047-1.15) for both subsets
of participants.
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For all participants, level of intellectual disability, sex, race/ethnicity components and the
presence of an APOE ¢4 allele were not related to baseline levels of Ap42, AB40 or the
AP42/AB40 ratio. AB40 levels increased with age (r=".135, P=.031), while levels of AB42
and the AB42/AB40 ratio decreased with age (r=-.17, p=.008 and r= -.16, p=.009,
respectively).

Stage 1 screening based on tagSNPs identified SNPs in RUNX1 and DSCR1 on chromosome
21 genes (Table 2), and identified SNPS in MTHFR, MTHFDIL, RELN, CALHM1,
SORCSL, SORL1, ACAN, and PCDH11X on non-chromosome 21 genes that were associated
with AB42 levels at empirical p-value<0.05 (Table 2). In Stage 2 fine mapping for genes on
Chromosome 21, none of the SNPs for Ap42 level achieved the adjusted gene-wiser
empirical p-values using the Benjamini and Hochberg approach (Benjamini and Hochberg,
1995, Benjamini and Yekutieli, 2001) (Table 2). In Stage 2 fine mapping for non-
chromosome 21 genes, two SNPs (rs177736358 and rs755577) that are ~2.5kb apart on the
calcium homeostasis modulator 1 (CALHM1) gene were significant after correcting for
multiple testing, and two SNPs (rs11814111 and rs8878183) on SORCSL had adjusted p-
values of 0.066, approaching the threshold of 0.05, while SNPs on the other non-
chromosome 21 genes failed to achieve the adjusted gene-level empirical p-values. (Table
2).

Stage 1 screening based on tagSNPs identified SNPs in the APP, SOD1, DSCR1, and
BACE2 chromosome 21 genes (Table 3) and SNPs in the BIN1, RELN, DAPK1, IDE, ACAN,
LDLR and PCDH11X non-chromosome 21 genes that were associated with Ap40 levels at
empirical p-value<0.05 (Table 3). In Stage 2 fine mapping, 3 SNPs in the SOD1 gene that
were significant at the p-value of 0.05 for single point analysis barely missed the threshold
p=0.05 for significance (p=0.0529) in the gene-wise analysis correcting for multiple testing,
but none of the SNPS in APP, DSCR1, or BACE2 chromosome 21 genes achieved
significance in the gene-wise analysis (Table 2). 12 of 13 SNPs in the insulin degrading
enzyme (IDE) gene, spanning 20kb, remained significant after adjusting for multiple testing
while SNPS in the other non-chromosome 21 genes did not achieve gene-wise empirical p-
values.(Table 3).

3.4 Ap42/AB40 ratio

In Stage 1 screening, SNPs in the APP, RUNX1 and BACE2 chromosome 21 genes (Table 4)
and SNPs in the DAPK1, SORCSL, SORL1 and LDLR non-chromosome 21 genes reached
the threshold of 0.05 for single point analysis, and were associated with variation in the level
of the AB42/AB40 ratio (Table 4). In Stage 2 fine mapping, the contiguous seven SNPs for
the sortilin-related VPS10 domain containing receptor 1 (SORCSL) gene located on 10¢23-
g25, which were strongly associated with the AB42/AB40 ratio in Stage 1 screening,
remained significant after multiple testing adjustment (0.0337<p<0.0394) while SNPS in the
other genes did not achieve statistical significance.(Table 4).
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3.5 Haplotype analysis

To further characterize candidate regions that may harbor putative variants, we then
performed a 3-mer sliding window haplotype analysis for the 3 promising candidate genes
with the strongest support for association, CALHM1 for AB42, IDE for AB40, and SORCSL
for AB42/AB40. As shown in Supplemental Tables 2-4, multiple haplotypes anchoring on
the SNPs that were significant from the single point gene-wise analysis strengthened the
support for association.

4. DISCUSSION

We found significant SNP-wise associations with Ap peptide levels for SNPs on 17 genes of
47 candidate genes examined, and three genes (CALHM1, IDE, and SORCSL) remained
significant after correcting for multiple testing. These 47 candidate genes were selected from
previous genome wide linkage, association and expression studies of AD in the DS and
general populations. Our results extend previous findings of a relationship between SNPs in
APP, PICALM, SORLI1, BACE1, ALDH18A and RUNX1 and risk of AD in adults with DS
(Jones, et al., 2013, Lee, et al., 2007, Margallo-Lana, et al., 2004, Patel, et al., 2011) to
include examination of plasma beta amyloid peptides as a critical risk factor for AD in DS,
and employing a wider range of SNPs and genes. We found significant gene-wise
associations with A peptide levels for SNPs in 3 genes: CALHM1, IDE and SORCSL. For
APB42 levels, two SNPs (rs755577 and rs17736358) in CAHLM1 were associated at the gene-
wise level. For AB40 levels the strongest gene-wise associations were found for a set of
SNPs on IDE, located 94,217038 to 94335799 bp. These were represented by a set of
contiguous 3-mer haplotypes with empirical p-values ranging from 0.00015 to 0.00063 (See
Supplement table 3). As an external confirmation, the 2-stage meta-analysis of the
Alzheimer Disease Genetics Consortium (ADGC) dataset reported that rs2421942 was
significantly associated with AD. For levels of the AB42/AB40 ratio, the strongest gene-wise
associations were found for SNPs in SORCSL, located in the region encompassing
108,479,649 to 108,647,761bp. Although the exact same set of SNPs were associated with
AD in the (ADGC) meta-analysis, rs12248379 (chr10:108562008) (p=0.00534) overlapped
with haplotype A-C-C that was significant in our dataset (p=0.00329). Broadly classified,
variants in these genes may influence APP processing (CALHM1, IDE) and vesicular
trafficking (SORCSL), neurodevelopmental processes, response to oxidative stress (SOD1).

Processing of amyloid precursor protein (APP) by cleavage by 8 and vy secretases to generate
AP peptides is central to the pathogenesis of AD (Vardarajan, et al., 2012). Missense
mutations in the gene for APP, which increase the proteolytic conversion of APP into the
fribillogenic AB42 peptide, have been shown to lead to early onset of AD (Goate, et al.,
1991, Guerreiro, et al., Rogaeva, et al., 2007, Scheuner, et al.,1996, Younkin, 1997), but less
work has been done on the relation of common SNPS in APP to age at onset, risk of AD, or
individual differences in AP peptide levels (Benitez, et al., 2013, Chapman, et al., 2013,
Kimura, et al., 2007, Shulman, et al., 2013). Several, but not all, studies have found a
relationship between high initial levels of Ap42 and subsequent development of AD, both
among adults with Down syndrome (Coppus, et al., 2012, Head, et al., 2011, Jones, et al.,
2009, Matsuoka, et al., 2009, Schupf, et al., 2007, Schupf, et al., 2001) and in the general
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population (Blasko, et al., 2010, Mayeux, et al., 2003, Mayeux, et al., 1999, Pomara, et al.,
2005, Schupf, et al., 2008). However, large GWAS studies of AD have not found an
association between SNPs in APP and late onset AD (LOAD) (Bertram and Tanzi, 2012,
Hollingworth, et al., 2011, Lambert, et al., 2009b, Naj, et al., 2011). A recent GWAS meta-
analysis of plasma Abeta peptide concentrations in nondemented elderly also failed to find
SNPs on APP that were associated with Ap levels, although several suggestive loci were
found on other genes; the gene most strongly associated with AB42 was CTXN3 (cortexin3),
involved in AB42 secretion (Chouraki, et al., 2014). In our cohort of adults with DS, we did
find SNPs on APP that were significantly associated with AP peptides in the single point
analysis; however, after correcting for multiple testing at the gene-wise level, those SNPs
were no longer significant. This may reflect the very high level of A that is found among
all adults with DS (Conti, et al., 2010, Head, et al., 2011, Mehta, et al., 1998, Schupf, et al.,
2001, Teller, et al., 1996, Tokuda, et al., 1997): it may be that processing and clearance
rather than generation of Af are more important factors associated with the individual
differences we have examined. It is also possible, given the results of the single point
analysis, that studies of SNPs in APP, using a much larger sample than we were able to
study in this paper, will identify SNPs in APP associated with individual differences in
levels of AP peptides.

We found that the A allele in rs755577 and the G allele in rs17736358 on CALHM1 were
associated with individual differences in Ap42 levels. However, this SNP is located 5.8kb
and 8.3kb away from rs2986017 the SNP which has been associated with increased risk and
age at onset in some (Boada, et al., 2010, Dreses-Werringloer, et al., 2008, Lambert, et al.,
2010), but not all (Beecham, et al., 2009, Bertram, et al., 2008, Minster, et al., 2009) prior
studies. CALHM1 is expressed in the hippocampus and encodes a calcium channel involved
in APP processing. The CALHM1 rs2986017 polymorphism has been proposed to increase
AP levels by interfering with CALHM1-mediated Ca(2+) permeability (Dreses-Werringloer,
et al., 2008). Replication in a larger dataset will be required to confirm this finding.

We found SNPs on IDE (insulin degrading enzyme) that were associated with individual
differences in Ap40 levels. IDE shares insulin and Ap as substrates (Kurochkin and Goto,
1994). Consistent with our findings, IDE is up-regulated in amyloid plaques, (Bernstein, et
al., 1999) and lower expression of IDE is found in the hippocampus in brains of elders with
LOAD who are APOE ¢4 positive (Cook, et al., 2003, Qiu and Folstein, 2006), and in
persons with mild cognitive impairment (Zhao, et al., 2007), who are at highest risk for
LOAD. Lower IDE expression has also been found to correlate with higher levels of cellular
AP42 associated with PS1 mutations in cellular models. Several have found an association
between a variant on IDE and plasma AB42 or AB40 levels (Carrasquillo, et al., 2010, Reitz,
et al., 2012). However, data on the relation of the IDE locus with AD is conflicting. Some
studies showed no association between the IDE locus and LOAD (Abraham, et al., 2001,
Boussaha, et al., 2002, Nowotny, et al., 2005, Ozturk, et al., 2006, Sakai, et al., 2004), while
other studies have found an association (Carrasquillo, et al., 2010, Vepsalainen, et al., 2007,
Zuo and Jia, 2009).

SORCSL is a member of the vacuolar protein sorting 10 (VPS10) domain-containing
receptor protein family. VPS10 receptors are involved with APP trafficking and can
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influence APP processing and A production through linking APP to the endosomal
retromer complex and access to secretases that cleave APP (Lane, et al., 2010, Lane, et al.,
2013). SNPS in SORCSL1 have been associated with increased risk for late onset AD (Reitz,
etal., 2011a, Rogaeva, et al., 2007) and also influence AP peptide levels where over-
expression of SORCSL reduces y-secretase activity and AP levels, and SORCSL suppression
increases y-secretase processing of APP and AP levels (Rogaeva, et al., 2007).

An interesting connection between IDE and SORCSL, the candidate genes with strongest
signals in chromosome 10 in our study, is that both may be related to hyperinsulinemia and
type 2 diabetes, potential important risk factors for LOAD. (Cheng, et al., 2011, Luchsinger,
et al., 2004) Certain IDE genotypes are related to a higher risk of diabetes (Fakhrai-Rad, et
al., 2000, Karamohamed, et al., 2003, Kwak, et al., 2008, Rudovich, et al., 2009), although
the contribution of IDE to diabetes is controversial,(Groves, et al., 2003) and other studies
have found no relationship.(Florez, et al., 2006, Qin and Jia, 2008). SORCSL may also affect
insulin levels and the risk of diabetes (Clee, et al., 2006, Goodarzi, et al., 2007, Lane, et al.,
2010). Diabetes and insulin resistance are also more prevalent in persons with Down
syndrome (Fonseca, et al., 2005). Thus, the connection of IDE, SORCS]L, insulin resistance
and diabetes, Ap and AD in Down syndrome requires further investigation.

Several genes on chromosome 21 are involved in inflammation and are overexpressed in

DS, including APP, superoxide dismutase (SOD-1), Ets-2 transcription factors, Down
Syndrome Critical Region 1 (DSCR1) stress-inducible factor, beta-site APP cleaving
enzyme (BACE-2), and S1004. In this study, SNPS in SOD1 were associated with individual
differences in levels of Ap40, but not with AB42 or the AB42/AR40 ratio and SOD1 has been
implicated in neurodegenerative processes (Lott, et al., 2006). Adults with DS overexpress
S0OD1 and show increased free radical-mediated oxidative damage (Markesbery and Lovell,
2007, Reynolds and Cutts, 1993). Increased SOD1 expression has been found in
degenerating neurons in the brain of adults with DS (Furuta, et al., 1995). The rate of
production of Ap from APP may be increased in the presence of this type of oxidative
damage (Dickinson and Singh, 1993, Lott and Head, 2001), where membrane damage
secondary to lipoperoxidation allows abnormal cleavage of the protein (Singth and
Dickinson, 2006). Zis and colleagues (Zis, et al., 2012) observed in a longitudinal study that
higher SOD levels were positively associated with memory performance over a period of 4
years in 26 adults with Down syndrome, and suggested that these enzymes may have
protective, antioxident effects. Further work will need to be conducted to determine the
contribution of SOD levels to onset of dementia in adults with DS. Further work will need to
be conducted to determine the contribution of SOD levels to onset of dementia in adults with
DS.

In sum, recent GWAS and meta-analyses of genes associated with risk for AD have
identified SNPS associated with several major pathways, including amyloid production,
lipid/cholesterol metabolism, immune response and inflammation, vesicular trafficking/
synaptic function and neurodevelopment. Our study examined the relation of candidate
genes for AD to individual differences in AP peptide levels among unaffected adults with
Down syndrome. We found significant associations with candidate genes in several of these
pathways but the strongest associations were related to Ap processing, neuro-developmental
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processes, and oxidative damage. These findings support the hypothesis that individual
differences in AP processing or deposition, distinct from overexpression of APP, may act as
an initial step in the pathogenesis of AD.

Our study has several limitations. Timing of blood draws was not specifically controlled for.
Blood draws were done between 10 am and 4 pm. We believe that this diurnal variation is
unlikely to alter the relation between Af levels and SNPs, since timing was randomly
distributed and variations would be expected to lead to non-differential bias. However, this
is a potential source of increased variability in our A measures.

Not all the genes associated with individual differences in AB peptide levels in our cohort of
adults with DS have been confirmed in recent large GWAS and meta-analyses as associated
with risk for AD in the general population. Our study is limited by a relatively small sample
size, but examined the role of these genes in a very high risk group that is characterized by
early onset of AD and by especially high levels of Af peptides. These findings may
therefore help to clarify pathways that contribute to the development of AD, both in adults
with DS and within the broader population.
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Flow chart for a 2-stage candidate gene study of Abeta;42, Abeta;40, or the Abeta;42/40

ratio
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Demographic Characteristics

Characteristic

Participants

Sample Size 254
Age (Mean £ S.D.) 49.6 +6.8
Sex (n, %)

Male 60 (23.6)

Female 194 (76.4)
Level of Intellectual Disability (n.%)

Mild/Moderate 144 (56.7)

Severe/Profound 110 (43.3)
Ethnicity (n, %)

White 230 (90.6)

Non-White 24 (9.4)
APOE allele frequency

E4 0.1133

E3 0.8066

E2 0.0800

AB Peptides (pg/ml: Mean, range)
Ap42
AB40

AB42/AB40 ratio

28.2 (8.0-132.4)
156.0 (24.3-491.4)
0.21 (0.047-1.15
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