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Physiol Genomics 51: 517-528, 2019. First published September 18,
2019; doi:10.1152/physiolgenomics.00057.2019.—Background: SNPs in
the first intron of the fat mass and obesity-associated (FT0O) gene
represent the strongest genome-wide associations with adiposity
[body mass index (BMI)]; the molecular basis for these associa-
tions is under intense investigation. In European populations, the
focus of most genome-wide association studies conducted to date,
the single nucleotide polymorphisms (SNPs) have indistinguish-
able associations due to the high level of linkage disequilibrium
(LD). However, in African American (AA) individuals, reduced
LD and increased haplotype diversity permit finer distinctions
among obesity-associated SNPs. Such distinctions are important to
mechanistic inferences and for selection of disease SNPs relevant
to specific populations. Methods: To identify specific FTO SNP(s)
directly related to adiposity, we performed: /) haplotype analyses
of individual-level data in 3,335 AAs from the Atherosclerosis
Risk in Communities Cohort (ARIC) study; as well as 2) statistical
fine-mapping using summary statistics from a study of F70 in over
20 000 AAs and over 1000 functional genomic annotations. Re-
sults: Our haplotype analyses suggest that in AAs at least two
distinct signals underlie the intron 1 FTO-adiposity signal. Fine
mapping showed that two SNPs have the highest posterior proba-
bility of association (PPA) with BMI: 1rs9927317 (PPA = 0.94)
and rs62033405 (PPA = 0.99). These variants overlap possible
enhancer sites and the 5'-regions of transcribed genes in the
substantia nigra, chondrocytes, and white adipocytes. Conclusions:
We found two SNPs in FTO with the highest probability of direct
association with BMI in AAs, as well as tissue-specific mecha-
nisms by which these variants may contribute to the pathogenesis
of obesity.

adiposity; African Americans; FTO; GWAS; obesity

INTRODUCTION

Genome-wide association studies (GWAS) of obesity [usually
quantified by body mass index (BMI)] in people of European,
African, and East Asian descent have systematically interrogated
common variants, identifying ~100 genome-wide significant as-
sociations (13, 17, 25, 32, 33, 40, 55). The biological mechanisms
underlying the majority of these associations are unclear, as most
obesity-associated single nucleotide polymorphisms (SNPs) do
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not lie near or within genes previously implicated in obesity.
However, the majority of implicated genes are expressed in the
central nervous system (25). In addition, SNPs in linkage disequi-
librium (LD) with GWAS-identified SNPs generally have indis-
tinguishable statistical associations with disease. A striking exam-
ple of this situation is the fat mass and obesity-associated (F70)
gene, in which SNPs in the first intron have the strongest statistical
associations with obesity yet detected (26).

FTO encodes an ortholog to the AlkB family of enzymes
that demethylate nucleic acids (15). Manipulation of Ffo ex-
pression in rodents leads to directionally inconsistent changes
in body weight (6, 43, 46, 51, 54). The first intronic region of
FTO is less than 100 bp 3’ from the transcriptional start site of
the gene retinitis pigmentosa GTPase regulator-interacting pro-
tein-1 Like (RPGRIPIL), a ciliary gene (24, 56) that is tran-
scribed in the 5'-direction. Mice hypomorphic for Rpgripll
display hyperphagia, obesity, and diminished response of food
intake to leptin administration (45).

The initial obesity GWAS in Europeans identified associa-
tions with FTO SNPs 1rs9939609 (12), rs8050136, and
r$9930506 (38), all with indistinguishable effects on BMI due
to the high degree of LD. 19939609 alleles do not perturb any
regulatory elements and are not correlated with gene expres-
sion. We previously showed that rs8050136 resides within a
putative binding site for the transcription factor Cut-like Ho-
meobox 1 (CUXI1) (46), which regulates expression of FTO
and RPGRIPIL (43, 44). Other groups have shown that
rs9930506 is associated with expression of /RX3 in the brain
(39), as well as expression of both /RX3 and /RXS5 in adipose
tissue (7), with apparent biological relevance conveyed by
physical interactions (chromosome conformation) with these
genes’ promoters, although the resolution of this chromatin
interaction data was not sufficient to detect (or rule out)
interactions with RPGRIPIL.

In African populations, rs9930506 is nominally associated
with BMI (13), while 1s9939609 (2, 13, 34) and rs8050136 (2,
13, 14, 16, 34) are not. Instead, in populations of African
ancestry, an independent cluster of linked SNPs is associated
with BMI. This cluster includes rs1421085, which is a second
SNP within a putative CUX1 binding site (2, 13, 16, 32, 34), as
well as rs3751812 (14, 16, 32, 34), rs17817964 (32), and
rs1558902, which is associated with obesity in both European
and African populations (2, 16, 25, 32, 40). The latter three
SNPs do not have proposed functional consequences. Clauss-
nitzer et al. (7) found that CRISPR/Cas9-mediated genome edit-
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Fig. 1. Obesity-associated single nucleotide polymorphisms (SNPs) in intron 1 of fat mass and obesity-associated (F70). Red SNPs are associated with obesity
in African Americans (AAs) only. Blue SNPs are associated with obesity in Europeans only. Black SNPs are associated with obesity in both European and
African Ancestry populations. Red linkage disequilibrium (r2) values pertain to AAs from the 1000 Genomes African Southwest (ASW) population.

ing at rs1421085 (CC to TT) in preadipocytes homozygous for the
obesity risk alleles at rs1421085 (C), rs9930506 (A), and
rs1558902 (A) restored the transcriptional repressor ARIDSB’s
binding motif in an enhancer spanning rs1421085. ARID5B
binding inhibited /RX3 and IRX5 expression, resulting in the
differentiation of preadipocytes into more energy-consuming
beige adipocytes rather than white adipocytes. Interestingly, oth-
ers have found that /RX3 has the opposite effect, and its presence
induces thermogenesis in vitro and in vivo (58).

The majority (but not all, for example rs1558902 and
1$9930506) of the obesity-associated FTO SNPs in Europeans
and African Americans (AAs) are therefore mutually exclusive
based on LD patterns in AAs (26, 27). While the European-
and African-specific groups of SNPs are indistinguishable among
Europeans due to LD, in AAs each group of SNPs belongs to an

independent LD cluster of correlated SNPs, despite being physi-
cally intercalated (Fig. 1, Table 1) (27).

European- and African-ancestry groups’ distinct population
genetic histories account for their disparate LD patterns. AAs
represent an admixture of Africans and Europeans, and the
former are the oldest of modern human populations in evolu-
tionary terms. Compared with other ancestral groups Africans
have experienced more generations for LD to decay via recom-
bination and mutation (49, 50).

As a consequence of reduced LD, fewer SNPs from GWAS of
AAs may tag physiologically relevant loci, and disease-associated
SNPs may reside closer to disease-causing alleles, compared with
GWAS of evolutionarily younger populations such as Europeans
and Asians (31). We therefore sought to fine-map the obesity-
associated FTO locus by leveraging the increased haplotype

Table 1. Linkage disequilibrium (1) between obesity-associated FTO SNPs in the 1000 Genomes ASW population

AA SNP Eur SNP AA SNP Eur SNP AA SNP Eur and AA SNP (IRX3 eQTL)
rs1421085 rs1558902 18050136 rs3751812 r$9939609 1517817964 19930506
AA SNP
rs1421085 -
Eur and AA SNP
rs1558902 0.972 -
Eur SNP
rs8050136 0.138 0.136 -
AA SNP
rs3751812 0.966 0.939 0.147 -
Eur SNP
r$9939609 0.117 0.116 0.841 0.125 -
AA SNP
rs17817964 0.908 0.883 0.151 0.934 0.127 -
Eur and AA SNP (IRX3 eQTL)
r$9930506 0.420 0.400 0.090 0.430 0.070 0.460 -

ASW, African Southwest; eQTL, expression quantitative trait locus; FTO, fat mass and obesity-associated; SNP, single nucleotide polymorphism.
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diversity and reduced LD in AAs, as well as functional genomic
annotations from the Encyclopedia of DNA Elements (ENCODE)
(10) and Roadmap Epigenomics (37) Projects.

SUBJECTS AND METHODS
Individual-level Data

The Population Architecture using Genomics and Epidemiology
(PAGE) study comprises large, ethnically diverse, and well-charac-
terized extant population studies, with subjects ranging from age 20 to
85 yr (29). Through the Database of Genotypes and Phenotypes
(dbGaP phs000223.v5.pl), we obtained access to Illumina Metabo-
chip SNP data from 3335 self-reported African Americans from the
Atherosclerosis Risk in Communities (ARIC) cohort who were geno-
typed as part of the PAGE Metabochip Pilot Study (Table 2).

Summary Statistics

We performed statistical fine-mapping of the FTO locus by ana-
lyzing summary association statistics [Z-scores computed from esti-
mated effect sizes on In(BMI) and the corresponding standard errors
for each analyzed SNP] from the largest study of F70O and adiposity
in AAs to date (34). This study involved a meta-analysis of data from
over 20,000 AAs genotyped on the Metabochip by the PAGE con-
sortium (Supplemental Table S1; see https:/figshare.com/articles/
FTO_Suppl_physiologicalgenomics_docx/8309738). Further details re-
garding each source population and genotyping are in Supplemental
Text 1 and 2 (https:/figshare.com/articles/FTO_Suppl_physiological-
genomics_docx/8309738), as well as the reports by Peters et al. (34) and
Gong et al. (13). This SNP array was designed to reliably capture
common and rare variation at metabolic trait-associated loci from
GWAS, including the FTO locus, for signal fine-mapping (3, 8, 13).

Summary association data are available for a total of 51 FTO SNPs:
all seven SNPs previously reported in studies of obesity in Europeans
and AAs; the four SNPs most significantly associated with obesity
in the PAGE meta-analysis of adiposity GWAS among AAs
(rs56137030, rs62033400, rs7188250, and rs62033413); three other
FTO SNPs that were associated with obesity in previous GWAS of
Europeans (rs1121980, rs6499640, and rs9941349), 30 rs56137030
tag SNPs at the FTO locus (21 with > >0.5 and 9 with > >0.2 to
<0.5 in AAs); and seven SNPs highlighted in previous studies of AAs
(Supplemental Table S2; https://figshare.com/articles/FTO_Suppl_
physiologicalgenomics_docx/8309738). We matched the summary
statistics’ reference and alternate alleles’ designations to those in the
1000 Genomes Project’s African Southwest (ASW) population.

Outcome Definition

BMI, the primary outcome, was log-transformed to normalize the
distribution and to reduce the influence of outliers on the analyses.

Confounding by Ancestry

In our analyses of individual-level ARIC data, we adjusted for
population stratification as a covariate using principal components
analysis (PCA). To account for possible heterogeneity arising from
differential admixture in AAs, we used the ADMIXTURE program
(1) to generate ancestry proportions in a supervised analysis, using
90 HapMap YRI and 165 CEU subjects as proxies for ancestral
African and European populations, and examined whether the
phasing and allelic association analysis results differed between
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AAs who shared relatively more (i.e., =60%) or less (<60%)
markers with the YRI trios. This cutoff was based on the obser-
vation that over 90% of the ARIC cohort shared =60% markers
with YRI trios (Supplemental Fig. S1; https://figshare.com/arti-
cles/FTO_Suppl_physiologicalgenomics_docx/8309738).

Functional SNP Annotations

The ENCODE project has annotated more than 80% of the
human genome with functional elements including sites of deoxy-
ribonuclease I (DNase I) hypersensitivity (DHS), transcription
factor binding, and histone modification (10). In addition, the
National Institutes of Health Roadmap Epigenomics Consortium
has generated reference epigenomic maps for “normal” human
cells and tissues, using RNA-Seq, DHS, DNA methylation, and
histone modification data (37) (Supplemental Text S4; https://
figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/
8309738). The Roadmap reference epigenomes’ full names and
additional information are given in Supplemental Table S2; https://
figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/
8309738.

Analytic Approaches

We used the statistical fine-mapping program PAINTOR (21) to
prioritize FTO SNPs associated with BMI in AAs, while incorpo-
rating pairwise LD as well as functional annotations. As additional
input, PAINTOR required specification of the number of SNPs that
were truly “causal” (driving the association signal at the FTO
locus); we therefore first performed haplotype analyses on indi-
vidual-level data to determine the number of unique signals influ-
encing BMI in AAs.

Haplotype analyses of individual-level ARIC data. Using PLINK
1.90 (5), we inferred orthogonal principal components (PCs) of
ancestry representing the top eigenvectors of the standardized simi-
larity matrix between samples. The genomic control variance inflation
factor (Agc) was used to show whether population stratification was
inflating the genotype-disease test statistic. A postadjustment Agc
value near unity (<1.05) (35) and significant P values for previously
established obesity-SNP relationships confirmed that the PCs ade-
quately accounted for population stratification.

We phased haplotypes composed of the FTO-associated SNPs
151421083, 151558902, rs8050136, 53751812, rs9939609, rs17817964, and
19930506 using PLINK 1.07 (36) and estimated haplotype frequencies,
with the minimum frequency set to 1%. Next, while adjusting for age,
sex, and ancestry, we tested for haplotype associations with In(BMI)
using a x? test with n-1 degrees of freedom, where n was the number
of haplotypes identified in the prior phasing step. Since we expected
risk alleles at FTO SNPs with prior obesity associations in AAs
(rs1421085, rs1558902, rs3751812, and rs17817964) to drive any
haplotypic association(s) between F7O and adiposity in AAs, we
tested whether the haplotype(s) containing their alternate alleles
(all in perfect LD) were associated with adiposity while designat-
ing the other haplotypes to the reference haplogroup. Statistical
significance was set at a = 0.05, and there was no need to correct
for multiple comparisons, as these analyses were restricted to a
small number of haplotypes, with all but one set to the reference
haplogroup.

We also separately phased FTO SNPs associated with obesity
in African populations (rs1421085, rs1558902, rs3751812, and

Table 2. Descriptive statistics for AAs in the ARIC study with individual-level SNP data available

Study Duration n Mean Age = SD (Range)

n (%) Women

Mean BMI = SD n (%) with BMI =30 kg/m?

1987—present 3,335 53.5 = 5.8 (45-64)

2,090 (62.7%)

29.7*+6.3 1,365 (66.3%)

AA, African American; ARIC, Atherosclerosis Risk in Communities; BMI, body mass index.

Physiol Genomics « doi:10.1152/physiolgenomics.00057.2019 - www.physiolgenomics.org
Downloaded from www.physiol ogy.org/journal/physiolgenomics at Columbia Univ (156.145.114.224) on November 16, 2019.


https://www.ncbi.nlm.nih.gov/gap/?term=phs000223
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738
https://figshare.com/articles/FTO_Suppl_physiologicalgenomics_docx/8309738

520

rs17817964) and in Europeans (rs8050136 and rs9939609) using
PHASE 2.1 (41, 42) and examined average BMI values for each
haplotype as well as all combinations of “African” and “European”
haplotypes. Since the /RX3 expression quantitative trait locus (eQTL)
rs9930506 is not in strong LD with the other F7O SNPs in AAs
(r* = 0.35-0.39), we separately considered this SNP in additional
analyses of both AA and European haplotypes.

Statistical fine-mapping of summary association statistics from
PAGE Meta-GWAS. PAINTOR takes as input /) the Z-score or Wald

W) from regressing In(BMI) on each SNP, 2) an LD

SE
matrix represeﬁting pairwise Pearson correlation coefficients between
each SNP, and 3) an annotation matrix with rows corresponding to
SNPs and columns representing unique annotations (i.e., SNP i is a
member of annotation K if entry [i,k] = 1). We created an LD matrix
using data from the 1000 Genomes ASW population and generated a
51 X 1145 annotation matrix for all 51 FTO SNPs for which summary
statistics and LD data were available (Supplemental Table S9; https://
figshare.com/articles/FTO_Table_S9_xIsx/9971447). Functional an-
notations included DHS data from Maurano et al. (30) and Thurman
et al. (48) as well as chromatin states from Hoffman et al. (19) and the
Roadmap Epigenomics Consortium (37).

The prior probability of association for each SNP was governed by
whether its coordinate coincided with those of tissue-specific func-
tional annotations. To determine which annotations were directly
relevant to the truly causal subset of adiposity-associated SNPs, we
used an empirical Bayes approach (21). We fit a PAINTOR model for
each annotation independently to generate annotation-specific mar-
ginal log likelihoods and then divided these values by the marginal
likelihood for the null model (no annotations) to compute likelihood
ratio test statistics (~x> with 1 d.f.). We included the most statistically
significant (P < 0.10) annotations in a final PAINTOR model to
calculate each SNP’s posterior probability of association with adipos-

ity.

Ethics Statement

statistic

This study was approved by the Institutional Review Board of
Columbia University (IRB-AAAN4760).

RESULTS
Data sets

We first analyzed haplotypes in individual-level data from
3,335 persons with African ancestry (Table 2) to determine the
number of putative causal SNPs for the BMI association signal
at the FTO locus. Next, we statistically fine-mapped the FTO-
adiposity association with PAINTOR by analyzing summary
statistics from 20,488 AAs, incorporating pairwise LD between
SNPs (Supplemental Tables S1 and S2; https://figshare.com/
articles/FTO_Suppl_physiologicalgenomics_docx/8309738), as
well as functional annotations based on epigenetic data. The
Metabochip was the primary genotyping platform.

Principal Components Analysis

We adjusted for confounding by population stratification in
the individual-level data using all autosomal Metabochip SNPs
outside of the 2.5 kb flanking the F7O and RPGRIPIL genes,
to avoid controlling for the effect of interest. After we pruned
the marker list to exclude SNPs in strong pairwise LD (+2>0.3)
as well as common variants (minor allele frequency >0.05),
69,209 markers remained, well above the ~10,000 SNPs
needed to accurately infer population structure (47). Without
any adjustment for population stratification, the variance infla-
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tion (Agc) was 1.19, and the association between the previ-
ously identified obesity-associated F7O SNP rs1421085 and
InBMI in ARIC was not significant (P = 0.80). After adjust-
ment for the top three PCs, the Agc was negligible (1.04),
while the rs1421085-InBMI relationship was nominally signif-
icant (P = 0.06).

Haplotype Phasing, Association Testing, and Stratified
Analyses

We used individual-level genotype and phenotype data to
perform phasing and to identify the risk-associated multi-
marker haplotype(s) and then determined the minimum number
of unique signals that may underlie their relationship with
adiposity. Phasing the FTO SNPs rs1421085, rs1558902,
rs8050136, 19939609, rs3751812, rs17817964, and rs9930506
yielded six haplotypes (Supplemental Table S4; https://figshare.com/
articles/FTO_Suppl_physiologicalgenomics_docx/8309738).
CAATTTG was the multimarker haplotype containing the risk
alleles for SNPs associated with obesity in studies of AAs
(rs1421085, rs1558902, rs3751812, and rs17817964) and was
designated as the risk haplotype. Mean BMI was slightly
elevated for CAATTTG carriers compared with noncarriers
(Supplemental Table S5; https://figshare.com/articles/
FTO_Suppl_physiologicalgenomics_docx/8309738).

The CAATTTG multimarker risk haplotype was nominally
associated with In(BMI) in the full ARIC cohort (F = 3.68;
P = 0.055), and the association became significant (F' = 4.65;
P = 0.031) after restricting to ARIC subjects who share over
60% of their markers with the YRI trios from the HapMap
Project (Supplemental Table S6; https://figshare.com/articles/
FTO_Suppl_physiologicalgenomics_docx/8309738). The as-
sociation weakened when the threshold was increased to in-
clude those sharing >70% or >80% of their markers with the
Yorubans (P = 0.083; P = 0.097, respectively), but the sample
size diminished with further restriction to increase homogene-
ity. All analyses were adjusted for age, sex, as well as the top
three PCs of ancestry.

Given the tight LD we observed between the SNPs exclu-
sively associated with disease in African-ancestry populations,
we separately phased the F70O SNPs associated with obesity in
AAs only, along with rs1558902 (rs1421085, rs1558902,
rs3751812, and rs17817964), and Europeans only (rs8050136
and rs9939609). We considered rs9930506 separately (below),
since it was not in strong LD with either SNP cluster. BMI was
elevated among carriers of both the African multimarker risk
haplotype (CATT), and the European risk haplotype (AT)
(Table 3).

We further considered how BMI varied with respect to
combinations of European- and African-ancestry FTO multi-
marker haplotypes, as well as 1$9930506 genotype (Table 3).
The European risk haplotype (AT) did not appear to increase
mean BMI beyond levels attributable to the risk alleles of SNPs
significant in studies of AAs. However, the rs9930506 risk
allele (A) [A/CATT (mean BMI 31.7 £ 6.1) versus G/CATT
(mean BMI 29.8 = 6.4)] appeared to increase BMI beyond the
level attributable to the African risk haplotype CATT alone.
Therefore, there may be at least two distinct signals, from
the African risk haplotype (CATT) and the rs9930506 risk
(A) allele, underlying the relationship between F7TO and
obesity in AAs. We were unable to test whether these
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Table 3. BMI among ARIC subjects with haplotypes derived from European and African obesity-associated SNPs

rs1421085 rs1558902 rs8050136 rs3751812 1$9939609 rs17817964 r$9930506 Multimarker Haplotype Count (Frequency) Mean BMI * SD
African Obesity-associated SNPs
T T - G - C - 5,888 (0.883) 29.7 £ 6.2
C A - T - T - 700 (0.105) 29.8 £ 6.3
European Obesity-associated SNPs
- - C - A - - 3,462 (0.519) 29.6 £ 6.3
- - C - T - - 285 (0.043) 30.0 £ 6.1
- - A - A - - 4 (0.001) 28.7 =83
- - A - T - - 2,919 (0.438) 298 £6.2
European SNP Haplotypes versus the African TTGC Haplotype
T T C A C - 3,442 (0.516) 29.6 6.3
T T C G T C - 281 (0.042) 299 = 6.1
T T A G A C - 4(0.001) 28.7 =83
T T A G T C - 2,161 (0.324) 29.7 = 6.1
European SNP Haplotypes versus the African CATT Haplotype
C A C T A T - - -
C A C T T T - - -
C A A T A T - - -
C A A T T T - 700 (0.105) 298 = 6.4
rs9930506 Alleles versus the African TTGC Haplotype
T T - G - C G 660 (0.010) 294 58
T T - G - C A 5,228 (0.784) 29.7 £ 6.3
r$9930506 Alleles versus the African CATT Haplotype
C A - T - T G 698 (0.105) 298 £ 6.4
C A - T - T A 2 (0.0003) 31.7 = 6.1
European SNP Haplotypes and rs9930506 Alleles versus the African TTGC Haplotype
T T C G A C G 261 (0.039) 294 *£55
T T C G T C G - -
T T A G A C G - -
T T A G T C G 401 (0.060) 295*59
T T C G A C A 3,181 (0.477) 29.7 = 6.4
T T C G T C A 281 (0.042) 299 = 6.1
T T A G A C A 3 (0.0004) 28.7 =83
T T A G T C A 1,760 (0.264) 29.8 = 6.1
European SNP Haplotypes and rs9930506 Alleles versus the African CATT Haplotype
C A C T A T G - -
C A C T T T G - -
C A A T A T G - -
C A A T T T G 698 (0.105) 298 = 6.4
C A C T A T A - -
C A C T T T A - -
C A A T A T A - -
C A A T T T A 2 (0.0003) 31.7 = 6.1

Risk alleles are in boldface.

patterns were statistically significant because of small sam-
ple sizes. Similar trends were apparent in analyses restricted
to ARIC subjects with >60% marker sharing with YRI
individuals.

Statistical Fine-Mapping of the FTO Locus for Mechanistic
Inferences

To further analyze the FTO locus we carried out statistical
fine-mapping assuming two putative causal SNPs [the risk
alleles at rs1421085, rs1558902, rs3751812, and rs17817964
(CATT) and the rs9930506 risk allele (A) driving increased
mean BMI], utilizing summary statistics for 51 F7O SNPs
(Supplemental Table S2; https://figshare.com/articles/FTO_
Suppl_physiologicalgenomics_docx/8309738) from a previous
study of the FTO locus and obesity (34) as well as 1,145
functional annotations from ENCODE and Roadmap, while
accounting for LD.

First, we identified the tissue-specific functional annotations
that were potentially significant (P < 0.10) in a PAINTOR
model assuming two causal SNPs underlie the BMI association

signal at the FTO locus (Supplemental Table S7; https://
figshare.com/articles/FTO_Suppl_physiologicalgenomics_
docx/8309738). The SNPs located in the annotated sites are
presented in Supplemental Table S8 (https://figshare.com/arti-
cles/FTO_Suppl_physiologicalgenomics_docx/8309738). The
significant annotations included 1) possible enhancers contain-
ing H3K27ac marks (EnhAc) and 2) regions positionally bi-
ased toward the 5’ end of actively transcribed genes (Tx5') in
fat (E023), brain [substantia nigra (E074)], cartilage (E049),
and liver (E066).

Using these annotations, we then generated a PAINTOR
model of the posterior probability of association (PPA) for
each SNP. The results are summarized in Table 4, which also
shows the potentially significant annotations in regions con-
taining the highest-ranking SNPs. 1s9927317 and rs62033405
had the highest PPA (Fig. 2). 1s9927317 overlapped with
significant Tx5' annotations in mesenchymal stem cell-derived
adipocytes (E023), mesenchymal stem cell-derived chondro-
cytes (E049), and substantia nigra (E074), while rs62033405
overlapped with EnhAc sites in adipocytes (E023) and chon-
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Table 4. FTO SNPs’ summary association statistics and posterior probability of association with adiposity in AAs in
PAINTOR models assuming two causal SNPs underlie the FTO-obesity relationship

rsID Chr. 16 Pos. Alt. Allele Ref. Allele MAF Beta Z Score P Value PPA Overlapping Significant Annotations

rs6499640 53769677 G A 0.35 —0.05 —0.25 8.10E-01 0.00
1s72803664 53784911 A G 0.11 —0.13 —0.36 7.10E-01 0.00
rs1108102 53789508 A T 0.14 —0.09 —0.32 7.40E-01 0.00
rs1421085 53800954 C T 0.12 1.11 3.54 3.00E-04 0.00
rs11642015 53802494 T C 0.11 1.09 3.47 4.90E-04 0.00
1$62048402 53803223 A G 0.12 1.13 3.60 2.40E-04 0.00
rs1558902 53803574 A T 0.12 1.13 3.28 1.00E-03 0.00
1s56094641 53806453 G A 0.12 1.12 3.57 2.80E-04 0.00
rs55872725 53809123 T C 0.11 1.09 3.47 5.30E-04 0.00
rs1121980 53809247 A G 0.47 0.35 1.83 7.20E-02 0.00
rs62033400 53811788 G A 0.12 1.35 4.41 1.10E-05 0.00
rs16945088 53812524 G A 0.29 —0.16 —0.76 4.50E-01 0.00
rs8057044 53812614 G A 0.29 —0.27 —1.29 2.10E-01 0.00
rs17817449 53813367 G T 0.39 0.37 1.84 5.90E-02 0.00
rs17817497 53815435 C T 0.11 0.99 3.16 1.80E-03 0.00
rs8050136 53816275 A C 0.44 0.42 2.08 3.20E-02 0.00
rs113191842 53817318 A G 0.06 1.23 2.77 5.70E-03 0.00
rs3751812 53818460 T G 0.11 1.02 3.25 1.20E-03 0.00
r$9939609 53820527 T A 0.48 0.04 0.21 8.20E-01 0.00
rs9927317 53820996 G C 0.26 0.85 3.83 1.50E-04 0.94 E023 Tx5’, E049 Tx5', EO74 Tx5'
rs17817712 53821125 G A 0.11 1.03 3.28 1.10E-03 0.00
1$62033405 53822387 T C 0.12 1.35 4.30 1.40E-05 0.99 E023 EnhAc, E049 EnhAc
1$79994966 53823727 C T 0.11 1.34 4.27 1.80E-05 0.00
1s28432761 53823878 C T 0.19 0.83 3.29 9.70E-04 0.00
rs11647020 53823990 T C 0.2 0.73 2.89 3.50E-03 0.00
rs11646715 53824007 A G 0.19 0.84 3.20 1.10E-03 0.00
1r$62033406 53824226 G A 0.14 0.85 3.00 2.50E-03 0.00
rs9941349 53825488 T C 0.19 0.69 2.73 5.40E-03 0.00
rs56137030 53825905 A G 0.12 1.35 4.41 8.30E-06 0.00
1s28567725 53826028 C T 0.22 0.87 3.59 2.40E-04 0.00
rs9931494 53827179 G C 0.19 0.94 3.72 1.60E-04 0.00
rs10468280 53827479 G A 0.11 1.01 3.22 1.40E-03 0.00
1s62033408 53827962 G A 0.11 1.03 3.28 1.10E-03 0.00
rs17817964 53828066 T C 0.12 1.02 3.36 8.60E-04 0.00
1s62033413 53830055 G C 0.12 1.33 4.34 1.40E-05 0.00
r$9930506 53830465 G A 0.22 0.66 2.72 5.50E-03 0.00
rs9933040 53830867 A T 0.22 0.65 2.68 6.00E-03 0.00
r$9922708 53831146 T C 0.21 0.64 2.44 1.60E-02 0.00
rs72805611 53831354 T C 0.12 0.97 3.20 1.30E-03 0.00
1$9922619 53831771 T G 0.19 0.69 2.73 5.70E-03 0.00
rs7204609 53833605 C T 0.34 —0.16 —0.76 4.30E-01 0.00
rs7188250 53834607 C T 0.12 1.34 4.38 1.30E-05 0.01
1s72805612 53834608 A G 0.12 1.36 4.33 1.40E-05 0.01
rs11075993 53837144 T G 0.12 0.98 3.12 5.00E-01 0.00
1s72805613 53837342 G A 0.12 0.89 2.93 3.30E-03 0.00
rs8044769 53839135 T C 0.25 —-0.33 —1.50 1.30E-01 0.00
rs12149832 53842908 A G 0.12 0.92 2.93 2.50E-03 0.00
rs11649091 53845169 G T 0.16 1.1 3.88 9.10E-05 0.00
rs11642841 53845487 A C 0.11 0.88 2.72 5.70E-03 0.00
rs7191513 53990523 G A 0.46 —0.03 —0.15 8.70E-01 0.00
1s9932411 54005163 T C 0.33 0.12 0.57 5.50E-01 0.00

Risk alleles are in boldface. Betas for In(BMI) represent the % change in BMI conferred per copy of the risk allele. Significant functional annotations
overlapping with the two highest-PPA SNPs are indicated in the last column. MAF, minor allele frequency; PPA, posterior probability of association; Tx5',

transcribed — 5" preferential; EnhAc, primary H3K27ac possible enhancer.

drocytes (E049). To predict the target genes of these SNP-
spanning putative regulatory elements, we examined GTEx data
but found that rs9927317 and rs62033405 do not tag eQTLs in fat,
brain or cartilage tissues or cells assayed by GTEx.

DISCUSSION

FTO has the strongest statistical association with BMI in
GWAS, but the molecular basis for the association of the
intron 1 SNPs driving this signal remains unclear. And,
while FTO variants have modest effect sizes (risk alleles at

this locus increase BMI by 0.39 kg/m?), they are enriched
for regulatory elements (30, 37) that likely modulate the
expression of genes involved in adiposity-related physiol-
ogy. It is possible that multiple mechanisms in several cell
types are responsible (26). In this study, we sought to
identify the specific alleles and tissues responsible for the
relationship between FTO and adiposity by capitalizing on
the Metabochip’s locally high SNP density, AAs’ low LD
and high haplotype diversity, and leveraging functional
annotations in non-coding DNA.
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Haplotype association analyses confirmed a significant rela-
tionship between the FTO multimarker haplotype (CAATTTG),
containing previously established obesity risk alleles at
rs1421085, rs1558902, rs8050136, rs9939609, rs3751812, and
rs17817964, plus the reference allele (G) at rs9930506, and
In(BMI) in subjects from the ARIC study (P = 0.031). Our
analyses showed that: /) the CATT haplotype containing
African risk alleles and 2) the risk (A) allele at rs9930506 both
contributed to increased mean BMI in AA adults.

We next performed statistical fine-mapping using PAINTOR
to distinguish 70 SNPs in LD by ranking them by their PPA
with adiposity; we also sought to identify the tissues or cellular
contexts in which these markers might contribute to differences
in adiposity. We utilized summary association statistics from a
study of FTO-adiposity associations in 20,000 AAs, currently
the best-powered high-resolution analysis of F7O available for
this population (34). In the model assuming two causal SNPs,
1$9927317 and rs62033405, had the highest PPA. PAINTOR
did not probabilistically implicate any of the SNPs previously
identified in major obesity GWAS as causal, although this is
not unexpected since SNPs selected for genotyping arrays
employed in GWAS are usually chosen based on the efficiency
with which they tag variation genome-wide (9).

The cluster of SNPs previously associated with obesity in
AAs was indirectly represented in the PAINTOR results, as the
cluster is in LD with rs62033405 (> > 0.8) (Fig. 2, Table 4).
In contrast, 19927317, the other SNP implicated by PAIN-
TOR, is not strongly correlated with any other SNPs in sum-
mary statistics made available by the authors. As expected,
r$9939609 and rs8050136 had PPAs of O since they are not
associated with obesity in AAs.

1$9930506, the second signal identified in the haplotype
association analyses, is an /RX3 eQTL but was not represented

among the high-PPA SNPs, as rs9927317 and rs62033405
were only weak proxies (> ~ 0.25). The relationship between
rs9930506 and adiposity in AAs was nominally significant
(P = 3.9 X 107°) when analyses were restricted to candidate
genes (P = 5.8 X 1075 significance threshold), but not signif-
icant Metabochip-wide following correction for multiple test-
ing (P = 2.5 X 1077 significance threshold) (13), suggesting
that greater statistical power may be needed to detect its
possible effect in this population.

“EnhAc” denotes a possible enhancer site due to the pres-
ence of H3K27ac marks associated with the activation of
enhancer regions. rs62033405 was enriched for EnhAc chro-
matin states in white adipocytes (E023) and cartilage (E049),
while rs9927317 was significantly enriched for Tx5' chromatin
states in E023, E049, as well as the substantia nigra (E074).
Follow-up experiments are needed to identify the target
gene(s). “Tx5"” indicates that the annotated region is prefer-
entially associated with the start (5") end of actively transcribed
genes, in this case FTO, and is enriched for H3K79me2,
H4K20mel, and H3K36me3 marks that are associated with
transcriptional regulation and maintenance of genomic integ-
rity (11, 20, 22).

The substantia nigra is part of a dopamine signaling circuit
that also includes the ventral tegmental area, caudate putamen,
and nucleus accumbens. Fro-deficient mice display impaired
dopamine type 2 and type 3 receptor (D2/3R)-dependent neu-
ronal activation and behavioral responses (18) related to re-
ward sensitivity and addiction. We identified EnhAc and Tx5’
annotations overlapping intronic F70 SNPs in white adi-
pocytes (E023), while Claussnitzer et al. (7) showed that
perturbation of an rs1421085-spanning enhancer in preadi-
pocytes (E025) resulted in their preferential differentiation into
beige adipocytes versus white adipocytes. In line with both of
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these findings, our group has shown that Ffo influences bio-
logical processes at multiple points in the adipocyte lineage,
promoting adipogenesis in preadipocytes as well as maintain-
ing lipid content in mature white adipocytes (28). Overall, our
findings are consistent with previous work implicating FTO
SNPs in obesity pathogenesis in distinct tissues such as the
brain and adipose tissue (4, 7, 39, 43, 45, 53).

We identified tissues with biologically plausible roles in
obesity pathophysiology, particularly the substantia nigra and
adipocytes. Our haplotype analyses identified two independent
BMlI-elevating signals important for characterizing the contri-
bution of the FTO locus to adiposity in AAs (the CATT
multimarker haplotype and the 1s9930506-A allele), which are
distinguishable in African- but not European-ancestry popula-
tions due to LD. Our PAINTOR analysis assigned the highest
posterior probability of association with BMI in AAs to
1s62033405, which is in strong LD with the SNPs contributing
to the multimarker CATT signals from the rs1421085,
rs1558902, rs3751812, and rs17819964 risk alleles, providing
an additional line of evidence that these SNPs reliably repre-
sent an FTO adiposity risk signal in AAs. Larger and higher-
resolution studies in this population are needed to understand
whether the same can be said for the signals we identified at
1$9930506 and rs9927317. Due to extensive and high LD in
European-ancestry groups, the aforementioned SNPs are indis-
tinguishable from variants such as rs9939609 and rs8050136,
although the latter two SNPs and their proxies in AAs better
represent F'TO associations with adiposity in Europeans since
they are not associated with BMI in AAs. Thus, based upon the
analyses reported here, and by others (27), in studies of FTO
contributions to phenotypes related to adiposity (BMI) in
diverse populations, AAs should be scored using SNPs
rs1421085, rs3751812, and rs17817964 and Europeans using
SNPs rs8050136 and rs9939609; the first SNPs in each set are
likely the most representative given previous demonstration of
their effects on CUX1 binding and gene regulation (7, 44—46).
The single SNP rs1558902 could be used to score both AAs
and Caucasians, but with reduced specificity. The use of
diverse populations is advantageous for gene discovery related
to complex traits (57).

While we performed statistical fine-mapping on a reasonably
large number of FTO SNPs, the actual disease-relevant mark-
ers may not have been identified in this study and may only be
implicated through analyses of higher-resolution genetic data
from AAs. Using the same summary statistics, we attempted to
impute the association information for additional SNPs at the
FTO locus, but the available markers were not sufficiently
dense. We also considered summary information from other
studies of obesity in African-ancestry populations, but none
had as many F70 SNPs for fine-mapping as well as a larger
sample size. Lastly, the present study lacked adjustment for
unmeasured lifestyle and environmental factors such as diet
and exercise, which may modify the penetrance of FTO
genotypes on adiposity (52). As additional association data
and functional annotations from larger samples as well
chromatin looping data from disease-relevant contexts (23)
become available, analyses similar to those we report here
have potential to further refine FTO locus association sig-
nals for obesity.
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