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Abstract

Objectives—To identify novel loci for late-onset Alzheimer disease (LOAD) in Caribbean
Hispanic individuals and to replicate the findings in a publicly available data set from the National
Institute on Aging Late-Onset Alzheimer’s Disease Family Study.

Design—Nested case-control genome-wide association study.

Setting—The Washington Heights—Inwood Columbia Aging Project and the Estudio Familiar de
Influencia Genetica de Alzheimer study.

Participants—Five hundred forty-nine affected and 544 unaffected individuals of Caribbean
Hispanic ancestry.

Intervention—The Illumina HumanHap 650Y chip for genotyping.

Main Outcome Measure—cClinical diagnosis or pathologically confirmed diagnosis of LOAD.
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Results—The strongest support for allelic association was for rs9945493 on 18923 (P=1.7 x
1077), but 22 additional single-nucleotide polymorphisms (SNPs) had a P value less than 9 x 1076
under 3 different analyses: unadjusted and stratified by the presence or absence of the APOE &4
allele. Of these SNPs, 5 SNPs (rs4669573 and rs10197851 on 2p25.1; rs11711889 on 3g25.2;
rs1117750 on 7p21.1; and rs7908652 on 10g23.1) were associated with LOAD in an independent
cohort from the National Institute on Aging Late-Onset Alzheimer’s Disease Family Study. We
also replicated genetic associations for CLU, PICALM, and BINL1.

Conclusions—Our genome-wide search of Caribbean Hispanic individuals identified several
novel genetic variants associated with LOAD and replicated these associations in a white cohort.
We also replicated associations in CLU, PICALM, and BINL1 in the Caribbean Hispanic cohort.

Numerous genome-wide association studies (GWAS) have been published for late-onset
Alzheimer disease (LOAD).1-13 Aside from APOE, additional candidate susceptibility genes
identified using GWAS methods for LOAD have included GAB2, GALP, 14¢32.13,
LOC651924, PGBD1, TNK1, CR1, CLU, PICALM, and BIN1.2415 In addition, variants in
SORL1 identified by Rogaeva et al'® have been replicated in several independent cohorts
and were significantly associated with LOAD in a meta-analysis.1’ Difficulties inherent to
the genetics of complex diseases (eg, etiologic heterogeneity, gene x environment and gene
x gene interactions, and methylation) remain with these studies, and much work needs to be
done. For example, the strength of association, or effect size, as measured by odds ratios
(ORs) varies widely across studies and is generally small. Yet, these GWAS have identified
a number of candidate genes that need to be replicated and their functional roles determined.
Despite the increasing number of identified susceptibility genetic variants, a relatively large
proportion of genetic variance remains unexplained. 18 This has much to do with both the
complexity of the genetics and inadequacy of heritability as a measure of genetic
contribution. Similar phenomena have been observed in other common, complex genetic
diseases and invoked a term, genetic dark matter, in GWAS.19:20

In the current study, we report the results of a GWAS in unrelated patients with LOAD and
controls of Caribbean Hispanic ancestry. This population was selected because the
prevalence and incidence rate of LOAD is higher than in white, non-Hispanic individuals
living in the same community?! and because we had previously identified numerous large
families multiply affected by LOAD. We first examined unrelated cases and controls in the
Caribbean Hispanic individuals and then replicated the associations using the publicly
available GWAS data from the National Institute on Aging Late-Onset Alzheimer’s Disease
(NIA-LOAD) Family Study (E. M. Wijsman, PhD, N. Pankratz, PhD, Y. Choi, PhD, J. H.
Rothstein, MS, K. Faber, MS, R.C., J.H.L., T. D. Bird, MD, D. A. Bennett, MD, R. Diaz-
Arrastia, MD, A. M. Goate, DPhil, M. Farlow, MD, B. Ghetti, MD, R. A. Sweet, MD, T. M.
Foroud, PhD, and R.P.M.; for the NIA-LOAD/NCRAD Family Study Group. “Genome-
wide Association of Familial Late-Onset Alzheimer’s Disease Replicates BIN1 and CLU and
Nominates CUGBP2 in Interaction with APOE,” unpublished data). This approach allowed
us to further assess the role of genetic admixture in the Caribbean Hispanic population. To
our knowledge, this is the only GWAS of Alzheimer disease that focuses exclusively on a
Caribbean Hispanic population.

METHODS

SAMPLES OF CARIBBEAN HISPANIC INDIVIDUALS

We studied 1093 unrelated Caribbean Hispanic individuals comprising 549 cases and 544
controls (Table 1). These participants were selected from the Washington Heights—Inwood
Columbia Aging Project (WHICAP) study and the Estudio Familiar de Influencia Genetica
de Alzheimer (EFIGA) study. The WHICAP study is a population-based epidemiologic
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study of randomly selected elderly individuals residing in northern Manhattan, New York,
comprising 3 ethnic groups: non-Hispanic white, Caribbean Hispanic, and African
American.2! For the current study, we restricted the study inclusion to individuals who were
self-reported Hispanic of Caribbean origin and did not include non-Hispanic white or
African American individuals. In addition, we selected 1 affected individual from each
family participating in the EFIGA study of Caribbean Hispanic families with LOAD.22 Both
studies followed the same clinical diagnostic methods.

The participants originated from the Dominican Republic and Puerto Rico. Approximately
60.3% of the affected individuals were participants in the WHICAP epidemiologic study,
and the remaining 39.7% of the participants were from the EFIGA study. All unaffected
individuals were participants in the WHICAP epidemiologic study. For the familial cases,
we selected 1 proband from each family to create a cohort of unrelated individuals. We
selected persons with definite or probable LOAD over those with possible LOAD to limit
the effects of comorbidity.

CLINICAL ASSESSMENTS

Data were available from medical, neurological, and neuropsychological evaluations23
collected from 1999 through 2007. The standardized neuropsychological test battery covered
multiple domains and included the Mini-Mental State Examination, 24 the Boston Naming
Test,2° the Controlled Word Association Test28 from the Boston Diagnostic Aphasia
Evaluation,?” the Wechsler Adult Intelligence Scale-Revised similarities subtest, 28 the
Mattis Dementia Rating Scale,® the Rosen Drawing Test,3C the Benton Visual Retention
Test,31 the multiple-choice version of the Benton Visual Retention Test,3! and the Selective
Reminding Test.32

DIAGNOSIS OF DEMENTIA

The diagnosis of dementia was established on the basis of all available information gathered
from the initial and follow-up assessments and medical records. The diagnosis of LOAD
was based on the National Institute of Neurological Disorders and Stroke—Alzheimer’s
Disease and Related Disorders Association criteria.33

GENOTYPING

Single-nucleotide polymorphisms (SNPs) were genotyped at the Illumina Genotyping
Service Center, San Diego, California, using Illumina HumanHap 650Y chips. From the
650Y chips, 658 610 SNP markers were originally genotyped. Quality control measures for
SNP genotype were performed using PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/).
We excluded SNPs with the following characteristics: missing genotype rate more than
20%; minimum allele frequency less than 1%; Hardy-Weinberg equilibrium test34 at a P
value less than .0001 in controls. Although the 650Y chip includes additional SNPs for
Yoruban individuals, we initially used less stringent criteria for quality control than others
because the Illumina SNP chips are optimized for white populations. Furthermore, we
wanted to reduce the likelihood of false-negative results. To limit the possibility that
positive signals were caused by SNPs with poor calling rate, we lowered the threshold for
the missing genotype rate to 5%. This screen reduced the total number of analyzed SNPs by
0.26%. None of the SNPs of main interest (ie, P value <9 x 1078 shown in Table 2) had low
genotype rates. Following all quality control measures, we analyzed 627 380 autosomal
SNPs.

Arch Neurol. Author manuscript; available in PMC 2012 January 30.


http://pngu.mgh.harvard.edu/~purcell/plink/

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Leeetal. Page 4

POPULATION STRATIFICATION

We applied 2 methods to estimate ancestry proportion in each subject, and thus population
stratification, in this case-control data set: STRUCTURE version 2.23% and identity-by-
state—based clustering method using PLINK version 1.053¢ (eAppendix,
http://www.archneurol.com). Briefly, we used 500 unlinked SNPs for the STRUCTURE
analysis3® and all available SNPs (n=627 380 autosomal SNPs) for the PLINK analysis to
assess underlying population structure. To see better representation of the geographic
separation from source populations, we augmented the 1093 Hispanic samples with 210
subjects from the HapMap Web site (http://www.hapmap.org), which included 60 European
American, 60 Yoruban, and 90 East Asian individuals. Our analyses revealed that the
assignment of cluster from the STRUCTURE program was comparable with that from the
PLINK program (data not shown). For all subsequent association analyses, we used the
cluster information obtained from the PLINK analysis to correct for population
stratification. The A genomic inflation factor was not inflated (1.0378 after population
stratification correction, eFigure 1).

STATISTICAL ANALYSIS

We conducted single-point allelic association analysis using the Mantel-Haenszel 2 test
statistic, which tests for SNP-disease association conditional on population subcluster
estimated from the PLINK analysis described earlier (Table 2). In addition, we performed a
multivariate logistic regression analysis, adjusted for age, sex, education, and population
stratification, using PLINK (Table 3). For the analysis of all subjects only, we adjusted for
the presence or absence of APOE along with the earlier-mentioned 4 covariates. To
determine whether the associations were caused by statistical artifact, we computed the P
value for 1 million replications to derive empirical P values for the top 23 SNPs that showed
the strongest support for association with LOAD. For this purpose, we randomly shuffled
affection status for each subject to create the null distribution and assess the likelihood of
false-positive results for each SNP.

REPLICATION DATASETS

We had prioritized candidate SNPs by selecting SNPs that had a nominal P value of 9 x
1075 or lower. While this cut point does not reach the Bonferroni-corrected genome-wide P
value of .05, this cut point helped us to prioritize SNPs of importance. To determine whether
the findings from the Caribbean Hispanic individuals could be replicated in an independent
data set, we examined the publicly available GWAS data from the NIA-LOAD study
(Wijsman et al, unpublished data [full citation on page 321]) (Table 2). The details of the
demographic and clinical characteristics of the NIA-LOAD participants who were included
in the GWAS are provided in their report (Wijsman et al, unpublished data [full citation on
page 321]). Briefly, the study first examined self-reported European American individuals:
2124 individuals from the NIA-LOAD study and 325 individuals from the National Cell
Repository for Alzheimer’s Disease (NCRAD) study. Those were augmented with 1186
unrelated individuals from the NIA-LOAD study and 204 individuals from the NCRAD
database. These self-reported European American individuals were subsequently clustered
into 3 groups (northern European, Ashkenazi Jewish, and southern European) based on a
principle component analysis. Subsequent analyses took ethnic background into
consideration. In the present study, we specifically compared the results from this GWAS in
Caribbean Hispanic individuals against the results from 3 subanalyses in the NIA-LOAD
GWAS: case-control analysis of unrelated individuals; family-based analysis stratified by
APOE; and family-based analysis stratified by ethnicity. Table 2 presents the P values for
each SNP. We also list SNPs located within 5 kilobases that have a nominal P value less
than .05.
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We subsequently identified a set of self-reported Caribbean Hispanic individuals from the
NIA-LOAD data set. These include an additional 116 unrelated patients with LOAD and 70
unrelated controls who were not included in previous analyses. To check comparability
between the 2 Caribbean Hispanic data sets and to check SNP calling between the Illumina
650Y and 610K SNP chips, we compared allele frequencies for common randomly selected
SNPs. Allele frequencies between the 2 data sets did not differ significantly.

CANDIDATE GENE ANALYSES

RESULTS

SUBJECTS

We performed separate analyses focusing on SNPs in the candidate genes that were
identified from previous GWAS, including CR1, CLU, PICALM, and BIN1, for the
significant genetic associations reported and replicated in 3 previous studies.”%:13 For these
genes, we performed 4 analyses: Mantel-Haenszel 52 test taking into account population
stratification, APOE e4-restricted analysis (ie, restricted to individuals with at least 1 copy
of €4 compared with those without), and Mantel-Haenszel 2 test taking into account the
presence or absence of APOE ¢4 (Table 4). In addition to those 4 genes, we followed up the
novel genetic association identified from the NIA-LOAD GWAS (Wijsman et al,
unpublished data [full citation on page 321]). The NIA-LOAD GWAS identified the
CUGBP?2 gene to be significantly associated with LOAD among a subset of samples with
homozygous APOE &4 carriers. Herein, we evaluated the association using 2 different
models to account for its association with the APOE &4 genotype (Table 4). Under model 1,
homozygous APOE &4 carriers were considered to have the putative genotype and all others
do not. Under model 2, homozygous APOE &4 carriers were considered to have the putative
genotype, while homozygous APOE &3 carriers, the most common isoform, were considered
to have a wild type. The remaining subjects were excluded in the analysis.

Seventy percent of the participants were women. The mean (SD) age at onset of LOAD was
79.98 (8.0) years, and 18.2% of the subjects were carriers of an APOE &4 allele. The mean
(SD) age at last examination of the controls was 78.87 (6.4) years. The analysis testing for
population stratification revealed that the 1093 Hispanic individuals comprised 658
individuals (60.2%) who were likely to be of European white ancestry, 401 (36.7%) who
were likely to be of African ancestry, and 34 (3.1%) who were unrelated to the prior 2
groups and from other Latin American countries (Figure 1).

STATISTICAL ANALYSIS

None of the SNPs reached genome-wide statistical significance at a nominal P value of 7.97
x 1078 or lower. The results from the population stratification-adjusted single-point analysis
are shown in a Manhattan plot (Figure 2). Twenty-three SNPs had P values less than 9 x
1078 in at least 1 of the 3 analyses, including all combined subjects, carriers of the APOE ¢4
allele, and non-carriers of the APOE &4 allele (Table 2). Of those, the strongest evidence for
association was observed for rs9945493 (P=1.7 x 10~ /; OR, 0.33; 95% confidence interval,
0.21-0.51) on 18q23. For each SNP, we calculated ORs and 95% confidence intervals as
well as empirical P values based on 1 million replicates (Table 3). As observed in other
GWAS, ORs ranged from 0.33 for rs9945493 to 1.87 for rs1117750 for all subjects.

We then examined the same 23 SNPs from Table 2 in an independent data set by comparing
the results from each of our 3 analyses against data from the NIA-LOAD GWAS, which was
restricted to self-reported European American individuals (Wijsman et al, unpublished data
[full citation on page 321]). Five SNPs (rs4669573 and rs10197851 on 2p25.1, rs11711889
on 3925.2, rs1117750 on 7p21.1, and rs7908652 on 10g23.1) from the list of 23 had a
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nominal P value less than .05 in at least 1 of the 3 analyses in the NIA-LOAD GWAS
(Table 2, footnote e); rs4669573 is located within the HPCALL1 (hippocalcin-like 1) gene,
and the ODC1 gene is located 100 kilo-bases away, and rs1117750 and several flanking
SNPs that supported allelic association were located within the DGKB (diacylglycerol
kinase, p 90 kDa) gene. Lastly, rs7908652 is located proximal to multiple genes, including
GHITM (growth hormone inducible transmembrane protein), C100rf99 (chromosome 10
open reading frame 99), PCDH21 (protocadherin 21), LRIT2 (leucine-rich repeat,
immunoglobulin-like, and transmembrane domains 2), LRIT1 (leucine-rich repeat,
immunoglobulin-like, and transmembrane domains 1), and RGR (retinal G protein-coupled
receptor) (eFigure 2).

REPLICATION OF THE PUBLISHED CANDIDATE GENES

For CLU, we observed that rs881146 (Pnominai=-00213; Table 4, footnote ¢) was
significantly associated with LOAD in population-stratified analysis and among APOE &4
carriers (Table 4). However, rs11136000 in CLU, reported both by Harold et al” and
Lambert et al® to be associated with LOAD in European and American white individuals,
was not associated with LOAD herein. For PICALM, rs17159904 was marginally associated
with LOAD in population stratification—adjusted and APOE-adjusted analyses. For BIN1,
we observed a positive association in €4 carriers for rs7561528 (Ppomina=-00536).

GENE x GENE INTERACTION

We evaluated an interaction model between APOE and CUGBP2 to follow up the putative
gene x gene interaction finding in the NIA-LOAD study (Wijsman et al, unpublished data
[full citation on page 321])(Figure 3). In that study, rs201119 in the CUGBP2 gene was
significantly associated with LOAD only among individuals with a homozygous &4
genotype (Ppominai=1.52 x 1078), but this SNP was not significantly associated with LOAD
when all subjects were considered (Pnomina=-726 for allelic association and P=.2607 for
genotype association). Because we had a smaller sample size than the NIA-LOAD GWAS,
we applied 2 somewhat different models to test whether the allelic association between
CUGBP2 and LOAD was restricted to carriers of APOE ¢4 and absent in non—APOE &4s
carriers. For this purpose, we performed an interaction model using PLINK in both the
Caribbean Hispanic and NIA-LOAD samples. As shown in Figure 3, in the Caribbean
Hispanic individuals, we observed a modest interaction between the genotype at rs20119 in
the CUGBP2 gene and APOE ¢4 genotype (Pnominai=-04898 under model 2). This is the
SNP that showed the original allelic association in the NIA-LOAD GWAS samples. For the
same SNP, the NIA-LOAD samples had a P value of .00012 under model 1 and .00016
under model 2, supporting the association under our models for both data sets. When we
examined all SNPs in CUGBP?2 in both data sets, however, we observed 2 different regions
with strongest signals (Figure 2). The SNP rs2242451 showed the strongest support under
model 2 (Promina=-00324) in the Caribbean Hispanic samples, while in the NIA-LOAD
samples, the strongest signal came from rs201119 and adjacent SNPs.

COMMENT

We report several novel candidate loci that may harbor putative disease variants in
Caribbean Hispanic individuals with LOAD and confirmed associations between LOAD and
the 4 genes that have been previously reported. These 4 novel loci (5 SNPs) include multiple
genes, and further examination is necessary to verify their involvement in LOAD. We
replicated the allelic association between LOAD and CUGBP2 in homozygous carriers of
the APOE &4 allele reported by Wijsman and colleagues (Wijsman et al, unpublished data
[full citation on page 321]). This gene was studied because the strongest signal was observed
in homozygous &4 carriers and this region on chromosome 10p14 contains the gene
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CUGBP2. CUGBP?2 has 1 isoform that is expressed predominantly in neurons, with
experimental evidence suggesting involvement in apoptosis in the hippocampus.3” Further,
it is involved in posttranscriptional RNA binding activities as well as pre-messenger RNA
alternative splicing. Based on structural similarity, it is speculated that this gene may be
involved in increasing COX2 messenger RNA. Although the current study does support
association with LOAD, the pattern of the associated SNPs differed between the 2 cohorts.
The difference in genetic architecture between non-Hispanic and Hispanic populations is the
most likely explanation for the fact that the associated SNPs differed between the 2
populations.

We found that the 4 candidate loci that were strongly associated with LOAD and were
replicated in the NIA-LOAD cohort are located near genes that could be biologically
relevant to LOAD. HPCAL1 on 2p25.1 is a calcium-binding protein expressed in the brain
and has been associated with hypertension in Japanese individuals,3® which in turn is
associated with LOAD risk. The region 10923.1 includes 3 genes that are expressed in the
brain and have been reported by Grupe et al,39 including PCDH21 (believed to be involved
in the neuronal maintenance), LRIT1, and RGR.

We replicated associations between LOAD and SNPs in 3 of the 4 genes that were
previously reported to be significant at the genome-wide level, namely CLU, PICALM, and
BINZ1. However, the associated SNPs between these candidate genes and LOAD were not
necessarily identical in the Caribbean Hispanic individuals compared with a European
American data set. Nonetheless, the overall support for the 3 genes is enhanced by the
observation that the allelic association extends to an ethnically distinct population.

CLU, believed to be involved in modulation of inflammation and lipid metabolism, was
associated with LOAD in carriers of € 4 (P=.00213). More than a decade ago, we examined
CLU (also known as APQJ) as a risk factor for LOAD because it shares similar functional
roles as APOE, including cholesterol binding and involvement in inflammation or injury.40
Based on a small set of coding polymorphisms in APOJ, Tycko and colleagues®® did
observe a positive association in 1 homozygous polymorphism, but this association was no
longer significant when all subjects with at least 1 copy of the APOE &4 allele were
excluded. Further, they observed a significant difference in allele frequencies by race, and
the present study also shows different linkage disequilibrium patterns between the Caribbean
Hispanic individuals and the NIA-LOAD cohorts (eFigure 3). Thus, the inconsistent
findings across studies could be attributed to an interaction between APOE and APOJ, small
sample size, different distribution of ethnic background in the participants, or any
combination of these factors. The present study observed an association between CLU and
LOAD in the presence of APOE &4 (Table 4). This is consistent with the much larger study
by Lambert and colleagues?® but not with the study by Harold et al.”

BIN1, a gene expressed in the central nervous system and reported to activate a caspase-
independent apoptotic process, was also associated with LOAD in only carriers of €4 (P=.
00536). PICALM is reported to be involved in the neurotransmitter release processes,
thereby affecting memory functions.#1:42

Together these 3 genes suggest that they contribute to the overall LOAD phenotype.
However, the measures of association are unlikely to be consistent across data sets, since in
addition to allelic differences among race groups, significant differences in the distribution
of vascular and inflammation risk factors can also alter the observed genotype-phenotype
relations, even after adjusting for other known risk factors including age, sex, and
education.#344
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The current study has some limitations. First, this study, based on a modest sample size of
Caribbean Hispanic individuals, does not have power to detect rare variants with weak
effects; thus, some risk variants may have been missed. Based on the original GWAS set,
the current study has 80% power, genome-wide, to detect alleles with a frequency of 0.35 or
higher when the OR is 1.5. When the OR for SNPs is 1.7, this study has 80% power to
detect SNPs with an allele frequency of 0.25 or higher. When we combined both Caribbean
Hispanic data sets (specifically, one from our GWAS along with the Caribbean Hispanic
subset that is part of the NIA-LOAD GWAS), the current study has 80% power genome-
wide to detect SNPs with somewhat lower allele frequencies. For a SNP with an OR of 1.5,
80% power can be achieved for SNPs with an allele frequency of 0.3 or higher. For a SNP
with an OR of 1.7, 80% power can be achieved for SNPs with an allele frequency of 0.2 or
higher. Power calculation was carried out assuming an additive model with SNP minor
allele frequency being comparable with the allele frequency of the putative variant
(http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html). Second, independent replication of the
candidate SNPs in Caribbean Hispanic individuals who share comparable genetic
architecture would have further strengthened the validity of the findings because the
likelihood of replicating the same allele within the same SNP would be higher than in other
ethnic groups. For this reason, we added a small set of Caribbean Hispanic individuals from
the NIA-LOAD GWAS data set who were evaluated using the same diagnostic tools.
However, the sample size remained relatively modest. When we evaluated the candidate
SNPs in an independent sample of European American individuals with different genetic
background (NIA-LOAD GWAS), often allelic associations for the same SNPs were
modest, but different SNPs within the gene supported allelic association. However, genetic
associations using a cohort with a different ethnic background strengthen the observed
association since (1) it is not unexpected to have multiple variants within a gene associated
with a disease (eg, PSEN1) and (2) the findings may be generalizeable to a wider set of
populations. These findings need to be further evaluated using functional genetics
approaches to evaluate the validity of observed association.

We used a dense set of SNPs to survey the genome to identify novel loci and to assess
support for allelic association with BIN1, CLU, and PICALM. The current cohort extends
previous GWAS of non-Hispanic white populations by exploring allelic association in an
admixed cohort with a different set of genetic and environmental risk factors. The
confirmation in the present study further strengthens the associations between variants in
these genes and LOAD. It also supports the role of other genetic (eg, APOE) and
environment factors modulating the genetic variant, especially when each variant may only
have a small effect size. We also identified novel candidate genes (eg, HPCAL1, DGKB) in
a Caribbean Hispanic cohort and replicated the association in an independent ethnically
different data set. These genes need to be examined further in independent data sets.
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Figure 1.

Population structure of a Caribbean Hispanic population. The dark gray dots represent
Hispanic white individuals, while the black dots represent Hispanic African individuals. The
light gray dots represent individuals from other Central American countries. The Figure was
generated using STRUCTURE.3®
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Figure 2.

Manhattan plot of allelic association analysis in a Caribbean Hispanic population. The
results of genome-wide association analysis are presented. One single-nucleotide
polymorphism has a P value less than 9 x 107 and multiple single-nucleotide
polymorphisms have P values less than 9 x 1075,
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Figure 3.

Association between CUGBP2 and late-onset Alzheimer disease (LOAD) among
homozygous APOE &4 carriers in Caribbean Hispanic subjects vs National Institute on
Aging Late-Onset Alzheimer’s Disease study European American subjects. Two models
were used to examine the relation between CUGBP2 and LOAD, conditional on APOE ¢4
status. Model 1 is homozygous APOE &4 carriers vs others; model 2 is homozygous APOE
&4 carriers vs homozygous APOE €3 carriers. The remaining subjects were excluded from
the analysis. bp Indicates base pair. The base pair location on the x-axis is not in scale.
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Table 1

Characteristics of Subjects in the Caribbean Hispanic Genome-Wide Association Study?

EFIGA
Family
Characteristic Total WHICAP Study
Affected with AD, No.
Definite/probable/possible 549 311 238
Definite/probable 400 173 227
Unaffected 544 543 1
Age, y, mean (SD)
At onset (affected) 79.98 (8.0) 82.61(7.3) 76.46 (7.7)
At last examination (unaffected) 78.87 (6.4) 78.94 (6.2)

Female, % 69.7 68.4 74.2
APOE allele frequency, % Total Affected Unaffected
&b 18.16 23.41 12.87
€3 75.07 70.58 79.60
€2 6.77 6.01 7.54

Abbreviations: AD, Alzheimer disease; EFIGA, Estudio Familiar de Influencia Genetica de Alzheimer; WHICAP, Washington Heights—Inwood
Columbia Aging Project.

aDescriptive demographic and clinical characteristics of the participating subjects from the WHICAP epidemiologic study and from the EFIGA
Family Study are presented. To maintain a cohort of unrelated individuals, we selected 1 subject with definite/probable AD from each family for
the EFIGA Family Study participants.

bAIIeIe frequency was significantly different in affected vs unaffected individuals.
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