

Imaging and plasma biomarkers for pathological accumulation in Down syndrome

Julie K. Wisch,¹ Ziqiao Jiao,² James T. Kennedy,¹ Ann D. Cohen,³ Zinayida Schlachetzki,⁴ Melissa Petersen,⁵ Benjamin L. Handen,³ Bradley T. Christian,⁶ Mark Mapstone,⁷ H. Diana Rosas,⁸ Florence Lai,⁹ Joseph H. Lee,^{10,11} Sharon J. Krinsky-McHale,¹² Frederick A. Schmitt,¹³ Jordan P. Harp,¹³ Christy Hom,¹⁴ Ira T. Lott,¹⁵ Sigan Hartley,¹⁶ Shahid Zaman,¹⁷ Lauren Ptomey,¹⁸ Jeffrey M. Burns,¹⁸ Dana Tudorascu,³ Laura Ibanez,^{1,19} Michael S. Rafii,⁴ Elizabeth Head,²⁰ Beau M. Ances¹ and the Alzheimer's Biomarker Consortium-Down Syndrome

Abstract

10 Down syndrome is characterized by triplication of chromosome 21, leading to early-onset
11 Alzheimer disease pathology, with nearly all individuals with Down syndrome developing
12 amyloid and tau pathology. In the new era of amyloid modifying therapies, it is vital to identify
13 early biomarkers for Alzheimer disease (AD) pathology in Down syndrome. Striatal amyloid
14 may begin to accumulate sooner than cortical amyloid in Down syndrome. Tau phosphorylation
15 at specific sites, including 217, can be quantified in plasma and may represent an important
16 mechanistic step in the development of tau pathology. This study had two aims: 1. To compare
17 the relative age at increase of multiple biomarkers (cortical amyloid, striatal amyloid, plasma
18 pTau217 and summary tau pathology) 2. To test whether plasma pTau217 can identify both the
19 current presence and likely future accumulation of amyloid and tau pathology.

20 To identify optimal biomarkers for early intervention, we examined longitudinal cortical and
21 striatal amyloid PET, plasma pTau217, and tau PET in 328 individuals with Down syndrome
22 enrolled in the Alzheimer Biomarker Consortium – Down Syndrome study. To compare the
23 timing of biomarker changes, we modeled longitudinal biomarkers using generalized additive
24 mixed models relative to age. We used receiver operating characteristic curve analysis to identify
25 thresholds for both current and likely future accumulation of amyloid and tau pathology. For all
26 comparisons, we used age as the null model, performing Delong tests to evaluate the
27 performance of age relative to biomarker-based prediction.

1 Imaging biomarkers increased around 40 years old, with plasma pTau217 increasing somewhat
2 later than the three PET biomarkers. Striatal amyloid increased before cortical amyloid in some
3 participants; however, this was not uniform across individuals. If an individual was classified as
4 a reliable accumulator with one biomarker, he or she was likely to be a reliable accumulator in
5 other biomarkers. Age was as sensitive as plasma pTau217 in its ability to both detect preclinical
6 Alzheimer disease pathology and predict near future accumulation of both amyloid and tau.
7 These results suggest that all adults with Down syndrome should be screened for Alzheimer
8 disease pathology starting shortly before age 40 and considered for clinical trials. Age alone was
9 as effective at detecting both current pathology and likely future accumulation as plasma
10 pTau217. Because this disease is so closely concurrent with age in individuals with Down
11 Syndrome, plasma pTau217 may not provide more diagnostic benefits than age.

12

13 **Author affiliations:**

14 1 Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110 USA

15 2 Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130 USA

16 3 Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213 USA

17 4 Alzheimer's Therapeutic Research Institute, Keck School of Medicine of USC, Los Angeles,
18 CA 90033, USA

19 5 Institute for Translational Research Department of Pharmacology and Neuroscience,
20 University of North Texas Health Science Center, Fort Worth, TX, 76107 USA

21 6 Department of Medical Physics and Psychiatry, University of Wisconsin Madison, Madison,
22 WI 53705-2275 USA

23 7 Department of Neurology, University of California Irvine School of Medicine, Orange, CA
24 92868-4280 USA

25 8 Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Boston,
26 MA, 02115 USA

27 9 Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston,
28 MA 02114, USA

1 10 G. H. Sergievsky Center, Taub Institute for Research on Alzheimer's Disease and the Aging
2 Brain, and Department of Neurology, Columbia University Irving Medical Center, New York,
3 NY 10033, USA

4 11 Department of Epidemiology, Columbia University Irving Medical Center, New York, NY
5 10032, USA

6 12 Department of Psychology, New York State Institute for Basic Research in Developmental
7 Disabilities, Staten Island, NY 10314, USA

8 13 Department of Neurology, Sanders-Brown Center on Aging, University of Kentucky College
9 of Medicine, William R. Willard Medical Education Building, MN 150, Lexington KY 40536,
10 USA

11 14 Department of Psychiatry, University of California Irvine School of Medicine, Orange, CA
12 92868-4280 USA

13 15 Department of Pediatrics, University of California Irvine School of Medicine, Orange, CA
14 92868-4280 USA

15 16 Waisman Center, University of Wisconsin, Madison, WI 53705, USA

16 17 Cambridge Intellectual and Developmental Disabilities Research Group, University of
17 Cambridge, Cambridge, CB2 8AH, UK

18 18 Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS
19 66160, USA

20 19 Department of Psychiatry, Washington University in St. Louis, 660 S. Euclid St., St. Louis,
21 MO 63110 USA

22 20 Department of Pathology, Gillespie Neuroscience Research Facility, University of California
23 - Irvine, Irvine, CA 92617 USA

24

25 Correspondence to: Julie Wisch, PhD

26 Department of Neurology

27 Washington University in Saint Louis School of Medicine

1 Campus Box 8111, 660 South Euclid Avenue, St. Louis, MO 63110, USA

2 E-mail: julie.wisch@wustl.edu

3

4 **Running title:** Tracking AD Accumulation in DS

5 **Keywords:** Alzheimer disease; biomarkers; plasma; Down syndrome

6

7 **Introduction**

8 Down syndrome is primarily caused by chromosome 21 triplication, which includes the genes
9 encoding the amyloid precursor (*APP*) protein and dual-specificity tyrosine-phosphorylated and
10 regulated kinase 1A (*DYRK1A*). The extra copy of the *APP* gene causes amyloid overproduction
11 throughout the lifespan, leading to the canonical pattern of Alzheimer Disease pathology¹⁻³. Tau
12 aggregation may be promoted by a dose-dependent response to *DYRK1A*⁴. Nearly all individuals
13 with Down syndrome have the hallmark Alzheimer Disease pathology – amyloid plaques and tau
14 tangles by age 40^{2,5}, with nearly full penetrance of dementia reported in individuals over 60⁶.
15 This genetic manifestation of Alzheimer Disease yields a pattern of pathological spread that is
16 relatively concordant with age^{1,7-9}.

17 Understanding the temporal nature of Alzheimer Disease pathological spread is critical, as
18 clinical interventions must be timed for maximum efficacy². Successful amyloid removal therapy
19 trials outside of Down syndrome have highlighted that earlier intervention yields greater clinical
20 benefit^{10,11}. Clinical intervention is highly important in this population, as Alzheimer Disease is
21 currently the primary limitation for extending the lifespan and quality of life of people with
22 Down syndrome⁶. Thus, a crucial focus for individuals with Down syndrome is identifying
23 biomarkers that have the greatest utility for detecting early Alzheimer Disease pathology and
24 determining the optimal window for clinical screening and therapeutic interventions.

25 In individuals with Down syndrome, amyloid accumulates first in the striatum and frontal lobe¹²⁻
26 ¹⁵, although this initial striatal binding is only observed with Pittsburgh Compound B (PiB) as the
27 PET (positron emission tomography) radiotracer^{13,14}. Individuals with Down syndrome also
28 develop substantial cortical amyloid burden, similar to observations in autosomal dominant

1 forms of Alzheimer Disease (ADAD), and sporadic Alzheimer Disease^{16,17}, but at a relatively
2 young age^{12,15,18–21}. Cross-sectional studies in adults with Down syndrome report elevation in
3 cortical amyloid compared to neurotypical controls between the ages of 35 and 42 years^{12,19,22–24}.
4 Longitudinal studies with PiB suggest striatal amyloid increases roughly 3 years prior to cortical
5 amyloid in Down syndrome^{13,15}. Striatal amyloid accumulates at nearly twice the rate as
6 observed in neurotypical individuals¹⁴. Cross-sectional measures of burden and longitudinal rates
7 of change in both cortical amyloid and striatal amyloid are promising biomarkers for both
8 identifying adults with Down syndrome early in the Alzheimer Disease pathological continuum
9 and quantifying intervention efficacy²⁵.

10 Amyloid accumulation is thought to trigger a cascade of events leading to tau pathology,
11 including the hyperphosphorylation of tau, which disrupts its normal function in stabilizing
12 microtubules²⁶. In Down syndrome, the overexpression of *DYRK1A*, the gene for which is on
13 chromosome 21, may promote tau hyperphosphorylation by directly phosphorylating tau at key
14 residues, priming it for further phosphorylation by *GSK-3β*, and contributing to a feedback loop
15 involving amyloid and *RCAN1* that amplifies tau dysregulation and aggregation⁴. This
16 hyperphosphorylation promotes tau aggregation into neurofibrillary tangles²⁷.

17 Tau can be phosphorylated at more than 40 amino acid sites, many of which can now be
18 quantified in plasma²⁸. Notably, *DYRK1A* phosphorylates tau specifically at sites 212 and 217,
19 which may lead to elevated levels of pTau212 and pTau217 in individuals with Down
20 syndrome^{19,29}. In sporadic Alzheimer Disease, longitudinal work suggests that approximately
21 70% of the association between amyloid PET rate of change and tau PET rate of change is
22 mediated by soluble tau²⁶, suggesting that tau phosphorylation provides an important mechanistic
23 step in the Alzheimer Disease pathological continuum. Cross-sectional work in Down syndrome
24 identifies a stronger correlation between plasma pTau217 and tau PET in amyloid positive
25 individuals than between plasma pTau217 and amyloid PET³⁰, which is opposite to what has
26 been reported in sporadic Alzheimer Disease³¹. It is possible that mechanistic differences in the
27 development of Alzheimer Disease pathology exist due to the triplication of chromosome 21 in
28 Down syndrome, leading to differences in the differential utility of specific tau phosphorylation
29 sites³². This suggests that the choice of biomarker for both inclusion criterion and study
30 endpoints may be dependent on the form of Alzheimer Disease.

1 Although it is possible to quantify many different tau phosphorylation sites, plasma pTau217 has
2 seen wide adoption in recent years^{27,28,31,33–38}. Plasma pTau217 demonstrates high efficacy at
3 detecting both the presence of amyloid plaques^{30,38} and tau tangles³⁹ across forms of Alzheimer
4 Disease. In individuals with Down syndrome, cross-sectional studies suggest it increases
5 between ages 36 and 40 years^{19,40}. When targeting clinical intervention for Alzheimer Disease,
6 plasma pTau217 may represent a powerful and relatively non-invasive approach to determining
7 both the current and future state of Alzheimer Disease pathology.

8 Studies of tau PET in Down syndrome highlight the relative temporal proximity of tau
9 accumulation to cortical amyloid accumulation^{7,19,41–43}. At autopsy, the pattern of spatial spread
10 of tau follows Braak staging, with early entorhinal, hippocampal and subcortical tau deposition
11 in individuals around age 35 years, and full neocortical coverage by the mid-50's²¹. *In vivo* work
12 suggests that tau PET increases in individuals with Down syndrome between ages 37 and
13 41^{7,19,41}, often within 2 years of converting to amyloid positivity^{42,43}. The apparent condensed
14 timeframe of tau aggregation following amyloid deposition highlights the potentially narrow
15 timeframe for which therapies that solely target amyloid may be beneficial for individuals with
16 Down syndrome. Thus, the earliest possible identification of individuals who are likely to
17 accumulate future amyloid is of the utmost importance.

18 To determine the optimal biomarker(s) for identification and the optimal window to start clinical
19 intervention, we used longitudinal data to characterize the temporal pattern of cortical amyloid
20 PET, striatal amyloid PET, plasma pTau217 and summary tau burden from tau PET relative to a
21 participant's age. Given the importance in identifying individuals with early amyloid
22 accumulation for clinical intervention and the potential benefits of using a relatively low-burden
23 approach (plasma instead of PET imaging), we evaluated the ability of plasma pTau217 to
24 identify both the current presence and likely future accumulation of amyloid and tau pathology,
25 as measured by PET imaging. Because of the strong association between age and pathological
26 development of Alzheimer Disease in Down syndrome^{1,7–9}, we compared the use of plasma
27 pTau217 relative to a participant's age in assessing the likelihood of future pathology
28 accumulation.

1 Materials and methods

2 The Alzheimer Biomarker Consortium – Down Syndrome (ABC-DS) is a multi-site study that
3 enrolls adults with Down syndrome (≥ 25 years) and collects longitudinal clinical, imaging, and
4 fluid biomarker data. For this longitudinal study, we included 328 people with Down syndrome
5 (ABC-DS Data Release July 2024). In order to maximize sample size, we included all enrollees
6 in ABC-DS who had completed at least one of the measures of interest (amyloid PET, tau PET,
7 plasma pTau217). Individuals had completed some combination of amyloid PET (Longitudinal
8 PiB = 84, Longitudinal AV45 = 49; Cross-Sectional PiB = 179, Cross-Sectional AV45 = 87), tau
9 PET (Longitudinal = 50, Cross-Sectional = 220), and longitudinal plasma ($N = 225$). Detailed
10 information about the overlapping nature of these biomarkers is presented as Supplemental
11 Figure 1. We defined our reference population as individuals with Down syndrome below age 35
12 without detectable amyloid pathology on amyloid PET (< 18 Centiloids [CL]) and/or plasma
13 pTau217 (< 0.478 pg/mL) rather than using sibling controls, as some biomarker measures can be
14 systematically elevated or depressed in individuals with Down syndrome. Informed consent was
15 obtained directly from participants when possible. If not possible, assent was obtained and
16 informed consent was obtained from the participant's legally authorized representative. Study
17 protocols were approved by centralized and local institutional review board of all ABC-DS sites.

18 Clinical Evaluation

19 Participants with Down syndrome visit ABC-DS sites every 16 months, at which point they
20 receive a clinical status via consensus conference. Consensus conferences are based on
21 neuropsychological assessments, medical and psychiatric history and interviews with
22 informants¹². Individuals receive a status of cognitively stable, mild cognitive impairment-Down
23 syndrome (MCI-DS), dementia due to Alzheimer Disease, or unable to determine.

24 Plasma Sampling and Analysis

25 Plasma pTau217 concentration was measured using immunoassay on a Mesoscale Discovery
26 platform (Lilly) using methods that have previously been described³⁰. Biotinylated-IBA493 was
27 used as a capture antibody and SULFO-TAG-4G10-E2 (anti-Tau) as the detector and samples

1 were diluted 1:2. The assay was calibrated with a synthetic P-tau217 peptide. *APOE* genotype
2 was derived from the blood samples using KASP genotyping assays (LGC Genomics, Beverly,
3 MA).

4 **Amyloid- and Tau-PET Imaging and Processing**

5 Amyloid PET was collected using either [¹¹C]-Pittsburgh Compound B (PiB) (N = 179) or [¹⁸F]-
6 AV45 (Florbetapir) (N = 87). Tau PET was collected using [¹⁸F]-AV1451 (Flortaucipir) (N =
7 220). For PET registration, all participants also completed a 3T MRI scan within 2 years of the
8 corresponding PET image.

9 PET images were aligned to FreeSurfer MR segmentations and then processed using a publicly
10 available pipeline (PET Unified Pipeline; <https://github.com/ysu001/PUP>)^{44,45}. Regional standard
11 uptake value ratios (SUVRs) were calculated using the cerebellar cortex as reference region.
12 Cortical amyloid burden was calculated as the arithmetic mean of the partial volume corrected
13 SUVRs from the precuneus, superior frontal, rostral middle frontal, lateral orbitofrontal, medial
14 orbitofrontal, superior temporal and middle temporal regions, and then standardized across
15 tracers using the Centiloid scale⁴⁶. The primary threshold for amyloid positivity was set at 18
16 CL^{7,18}, although we considered a range of values as many groups rely on different thresholds
17 between 10 and 30 CL. Striatal amyloid burden was only considered in these analyses from
18 amyloid PET scans obtained using PiB, as harmonization for this region has not been validated
19 and the striatal binding pattern has been most acutely detected with PiB¹³. No published value for
20 striatal positivity exists, so we considered a range of values from 1.10 – 1.55 SUVR. A summary
21 measure of tau burden was calculated from tau PET based on the arithmetic mean of the partial
22 volume corrected SUVRs from the amygdala, entorhinal cortex, inferior temporal region and
23 lateral occipital cortex⁴⁴. Tau positivity was set at 1.22 SUVR⁴⁴

24 **Statistical Analysis**

25 Because our objective was to identify the optimal biomarker(s) to target individuals with Down
26 syndrome who would most benefit from clinical intervention, we characterized the temporal
27 pattern of cortical amyloid PET, striatal amyloid PET, plasma pTau217 and summary tau PET
28 relative to a participant's age and then investigated the ability of each of these biomarkers to

1 forecast future pathological accumulation. We summarized participant demographics using the R
2 package tableone⁴⁷. All analyses were performed in R (v4.0).

3 **Age at typical biomarker elevation**

4 To compare the timing of amyloid PET, plasma pTau217 and tau PET changes, longitudinal
5 biomarker levels were assessed relative to age and estimated years to symptom onset
6 (EYO)^{12,19,41}. EYO was calculated by subtracting participant age from the average age of
7 symptom onset in Down syndrome (52.5 years) and is displayed for consistency with prior
8 work^{12,19,41}. Generalized additive mixed effect models with cubic regression splines (maximum 4
9 knots) were fitted for each biomarker, with age as the independent variable, an interaction with
10 group membership (either reference population or older individual with Down syndrome), and a
11 random effect for the individual. Super-threshold accumulation timing was estimated using
12 10,000 iteration bootstrap (resampling 80% of the data, with replacement), with confidence
13 intervals based on the bootstrap distribution. The divergence age between the reference
14 population, which included individuals with DS under the age of 35 and pathology negative, and
15 aging individuals with DS was identified as the earliest age where 95% confidence intervals no
16 longer overlapped. We conducted a supplemental analysis, performing robust linear regression
17 and extracting weights with the package MASS before applying the weights to the generalized
18 additive models and then proceeding with the bootstrap procedure (Supplemental Figure 3). To
19 compare the measure variability, we performed a Levene's Test with post hoc Tukey test on
20 baseline biomarker values normed to the reference population. A sensitivity analysis restricted
21 modeling to only individuals who had received the PiB tracer for cortical amyloid PET uptake
22 (Supplemental Figure 2).

23 **Plasma pTau217 to predict PET positivity**

24 Associations between plasma pTau217 and the three PET biomarkers of interest (cortical
25 amyloid burden, striatal amyloid burden, summary tau) were evaluated using Spearman
26 correlations and receiver operating characteristic curve (ROC) analysis. Because for some
27 measures, wide ranges of positivity thresholds are employed⁴⁸, and for others, no published cut
28 points for visual reads exist (e.g. striatal amyloid), we evaluated the ability of plasma pTau217 to
29 predict PET positivity for a range of thresholds for each biomarker. As a null model comparison,

1 we applied the same approach using age instead of plasma pTau217. A combination of Youden
2 index and visual inspection for multiple Youden peaks was used to identify the optimal cutpoint.

3 **Defining Reliable Accumulation**

4 To define a minimum noise threshold for each biomarker where individuals are likely to have
5 higher levels of that biomarker at subsequent visits²⁵ we calculated the annualized rate of change
6 for each biomarker in all amyloid negative individuals with Down syndrome under age 35 (our
7 reference population) using linear regression. We defined reliable accumulation as the 95th
8 percentile of the mean annualized rate of change, consistent with a previous study²⁵. To visualize
9 the relationship between annualized rate of change and baseline biomarker level, we generated
10 scatter plots, fitting a generalized additive model with cubic regression spline and a maximum of
11 four knots to the relationship between these two parameters.

12 **Predicting Future Reliable Accumulation**

13 To identify which individuals were reliable accumulators of the biomarker of interest, we first
14 used ROC analysis with the baseline biomarker value as the variable of interest and the earlier
15 derived classification of a reliable accumulator as the outcome variable. We evaluated the
16 Youden index, again performing a visual inspection of Youden index relative to biomarker
17 threshold to select the optimal threshold. We then evaluated the ability of plasma pTau217 to
18 predict future reliable accumulation for all three PET biomarkers of interest, again applying ROC
19 analysis. As a null model comparison, we applied the same approach using age as the variable of
20 interest. To visualize the relationship between annualized rate of change and plasma pTau217
21 level / age at baseline, we generated scatter plots, fitting a generalized additive model with cubic
22 regression spline and a maximum of four knots to the relationship between these two parameters.
23 We compared the quality of prediction between plasma pTau217 and age using a Delong test.
24 This analysis allowed us to infer the minimum threshold at which individuals are likely to
25 accumulate more pathology in the future.

26 **Results**

27 Study participants ($N = 328$) were all diagnosed with Down syndrome and between the ages of
28 25 and 72 (mean/median = 43) years; 57.9% male. Comparing longitudinal imaging and plasma
29 data relative to age between the reference population (amyloid negative and young [< 35 years],

1 $N = 61$) and the population of interest ($N = 267$), the population of interest had significantly
2 more cortical amyloid than the reference population at age 39.6 (Figure 1A). On average, they
3 reached amyloid positivity at 42.2 years (95% CI: 38.2, 47.0). These results using pooled data
4 across tracers were similar to the results on the limited cohort of individuals who had received
5 the PiB tracer (mean age = 41.1 years, 95% CI: 39.4, 45.3 years) (Supplemental Figure 2). Aging
6 (Affected) participants who received PiB tracer had significantly greater striatal amyloid binding
7 than the reference population (unaffected) at 39.2 years (Figure 1B). Striatal amyloid had
8 statistically lower variability than cortical amyloid burden (Difference = 3.81 Z, 95% CI: 2.34,
9 5.28, $p_{adj} < 0.001$), summary tau (Difference = 1.73 Z, 95% CI: 0.20, 3.25, $p_{adj} = 0.019$), and
10 plasma pTau217 (Difference = 2.22, 95% CI: 0.71, 3.73, $p_{adj} = 0.001$), suggesting the strength of
11 signal change in response to the presence of pathological development is lower for striatal
12 amyloid than the other biomarkers. On average, aging participants reached a striatal threshold of
13 1.25 SUVR at 38.4 years, but the 95% confidence interval exceeds the age range of the study
14 (95% CI: <25, >65). The population of interest had significantly elevated plasma pTau217
15 relative to the reference population at 46.1 years (Figure 1C). They reached a plasma pTau217
16 level of 0.478 pg/mL at 47.4 (95% CI: 38.7, >65) years. Aging participants also had significantly
17 elevated summary tau burden relative to the reference population at 42.4 years (Figure 1D). They
18 reached tau positivity (SUVR>1.22) at an average age of 40.6 (95%CI: 33.1, 47.8) years. Results
19 generated through the supplemental robust analysis were largely similar (Supplemental Figure
20 3), although plasma pTau217 elevation occurred marginally earlier (45.9 years), but there was no
21 significant difference in estimated age at plasma pTau217 level of 0.478 (48.6 years, 95% CI:
22 43.5, 52.9 years). All three PET measures were significantly elevated over the reference
23 population around age 40, but cortical amyloid PET has the greatest variability (based on
24 Levene's test), suggesting cortical amyloid burden has the highest signal-to-noise ratio among
25 the biomarkers examined. The variability of plasma pTau217 levels was significantly less than
26 cortical amyloid variability (Difference = 1.59 Z, 95% CI: 0.20, 2.97, $p_{adj} = 0.017$) but not
27 summary tau variability (Difference = 0.50 Z, 95% CI: -0.94, 1.93, $p = 0.811$) or striatal amyloid
28 variability.

1 Prediction of PET positivity

2 Plasma pTau217 and age both had moderate to strong correlations with PET-based pathological
3 burden, showing comparable performance in detecting both amyloid and tau positivity. For
4 cortical amyloid burden, plasma pTau217 ($\rho = 0.573$, 95% CI: 0.455–0.671) (Figure 2A) and age
5 ($\rho = 0.599$, 95% CI: 0.476–0.704) exhibited similar correlations. The predictive performance of
6 plasma pTau217 was highest at higher amyloid cutoffs and outperformed age-based thresholds at
7 a cutoff of 50 CL ($AUC_{pTau217} = 0.923$, $AUC_{Age} = 0.838$, $p_{Delong's\ Test} = 0.022$), but was
8 indistinguishable from age-based thresholds for lower amyloid cutoffs ($p_{Delong's\ Test} > 0.30$ in all
9 presented cases) (Figure 2B, 2C).

10 For striatal amyloid binding, plasma pTau217 ($\rho = 0.405$, 95% CI: 0.233–0.560) (Figure 2D)
11 showed a stronger correlation than age ($\rho = 0.195$, 95% CI: 0.009–0.358). The predictive
12 performance of plasma pTau217 was highest at higher striatal amyloid cutoffs but did not
13 outperform age-based thresholds at a cutoff of 1.55 SUVR ($AUC_{pTau217} = 0.741$, $AUC_{Age} = 0.779$,
14 $p_{Delong's\ Test} = 0.559$) or any other cutoff (Figure 2E, 2F).

15 For summary tau, plasma pTau217 ($\rho = 0.425$, 95% CI: 0.281–0.559) (Figure 2G) and age ($\rho =$
16 0.440, 95% CI: 0.309–0.556) had similar correlations. At advanced tau burden (1.58 SUVR),
17 plasma pTau217 (threshold = 0.555 pg/mL) out-performed age-based thresholds ($AUC_{pTau217} =$
18 0.965, $AUC_{Age} = 0.827$, $p_{Delong's\ Test} < 0.001$), but was indistinguishable from age-based thresholds
19 for lower tau cutoffs ($p_{Delong's\ Test} > 0.15$ in all presented cases) (Figure 2H, 2I).

20 Definition of Reliable Accumulation

21 Reliable accumulation, defined as the 95th percentile of pathological accumulation in the
22 reference population for each biomarker were as follows: cortical amyloid was 3.8 CL/year,
23 striatal amyloid was 0.14 SUVR/year, plasma pTau217 was 0.26 pg/mL/year, and PET tau was
24 0.053 SUVR/year (Figure 3). Individuals were labeled as reliable accumulators if they exceeded
25 this rate of change. A total of 38% of participants with longitudinal data were reliable
26 accumulators of cortical amyloid, 13% were reliable accumulators of striatal amyloid, 9% were
27 reliable accumulators of plasma pTau217, and 26% of participants were reliable accumulators of
28 tau. For all biomarkers, age 40 is a critical turning point for adults with Down syndrome in the

1 development of Alzheimer Disease pathology as the greatest proportion of reliable accumulators
2 were aged 40 and older. Accumulator profiles were compared across paired biomarkers
3 (Supplemental Figure 4). The greatest degree of discordance was between cortical amyloid
4 burden and plasma, where 39% of the participants with paired cortical amyloid and plasma
5 pTau217 values were reliable accumulators in cortical amyloid but not plasma. Excluding the
6 relationship between cortical amyloid and plasma, all other paired accumulator profiles were
7 concordant in more than 75% of cases, suggesting that if an individual with Down syndrome is a
8 reliable accumulator with one biomarker, he or she is likely to be a reliable accumulator in other
9 biomarkers.

10 **Prediction of Future Accumulation**

11 To determine optimal thresholds for predicting future pathological accumulation, we conducted
12 two cut point analyses. First, we classified individuals as accumulators or non-accumulators
13 based on their longitudinal biomarker data. We performed within-individual linear regressions
14 for each respective biomarker. Participants with positive associations between the biomarker of
15 interest and time were deemed “accumulators” for that biomarker. Then we performed two
16 cutpoint analyses, one for the threshold that maximized the baseline pathology measure’s ability
17 to detect whether an individual was an accumulator or not, and one for the identification of the
18 baseline plasma pTau217 value that best differentiated between accumulators of cortical
19 amyloid, striatal amyloid, or tau and an age-based null model.

20 **Threshold for Reliable Accumulation based on Baseline Biomarker**

21 Individuals surpassing 11.7 CL were more likely to be classified as reliable accumulators for
22 cortical amyloid (Figure 4A). This means that if an individual had a baseline cortical amyloid
23 value of 11.7 CL or greater, they were likely to have higher cortical amyloid values (>11.7 CL)
24 in subsequent visits. Individuals exceeding 1.31 SUVR were likely be considered reliable
25 accumulators for striatal amyloid (Figure 4B). A plasma pTau217 level above 0.482 pg/mL
26 predicted reliable accumulator status for pTau217 (Figure 4C), and individuals exceeding 1.22
27 SUVR were likely to be reliable accumulators of tau (Figure 4D) (Table 2).

1 **Threshold for Reliable Accumulation based on Baseline plasma pTau217**

2 Age over 38 years was more predictive of future cortical amyloid accumulation than a baseline
3 plasma pTau217 level above 0.270 pg/mL (Figure 5A–C), although the quality of these
4 predictions did not differ significantly ($p_{Delong\ Test} = 0.070$). This threshold had a low specificity
5 (0.286) with high sensitivity (0.929). A second threshold of 0.478 was identified based on visual
6 inspection of Youden peaks, and it had considerably higher specificity (0.667) but lower
7 sensitivity (0.500). This threshold also did not significantly differ from the age-based threshold
8 ($p_{Delong\ Test} = 0.466$), suggesting that restricting the cutoff based on specificity criteria did not
9 enhance the ability of plasma pTau217 to predict future cortical amyloid accumulation beyond
10 age. For striatal amyloid accumulation, plasma pTau217 and age performed similarly (Figure
11 5D–F) ($p_{Delong\ Test} = 0.559$). Similarly, plasma pTau217 and age showed comparable accuracy in
12 predicting future tau burden (Figure 5G–I) ($p_{Delong\ Test} = 0.668$). In brief, plasma pTau217
13 provides insight into future pathological accumulation, but age alone is a stronger predictor,
14 particularly for cortical amyloid accumulation (Table 2).

15 **Discussion**

16 This study aimed to determine the most useful biomarkers for identifying early signs of
17 Alzheimer Disease neuropathology accumulation in a longitudinal cohort of individuals with
18 Down syndrome. As Alzheimer Disease is strongly associated with age, particularly in Down
19 syndrome, the ability of age to predict future pathological accumulation was also evaluated.
20 Amyloid and tau positivity were both detectable around age 40 in people with Down syndrome,
21 consistent with prior studies^{7,12,19,24,41}. Based upon longitudinal data, the prevalence of
22 individuals who began to reliably accumulate Alzheimer Disease pathology as assessed by all
23 four biomarkers considered (cortical amyloid, striatal amyloid, plasma pTau217 and summary
24 tau burden), started around age 40. Age and plasma pTau217 were essentially equivalent in
25 detecting both current pathology and the likelihood of future pathology accumulation. These
26 results highlight that Alzheimer Disease in Down syndrome is strongly associated with age^{1,7–9},
27 seemingly to a much greater extent than ADAD⁴⁹. Additionally, individuals that reliably
28 accumulated one biomarker were likely to be a reliable accumulator of other biomarkers.

1 This aligns with previous cross-sectional studies reporting cortical amyloid accumulation in
2 individuals with Down syndrome between the ages of 35 and 42^{12,15,19,22–24}. We detected
3 significant increases in cortical amyloid burden over the reference population at 39.6 years,
4 within the previously reported range. While previous literature suggests striatal amyloid
5 accumulates before cortical amyloid in Down syndrome^{13,15}, we observed striatal amyloid
6 accumulates, on average, at the same time as cortical amyloid (39.2 years). However, there was
7 greater variability in striatal PET ligand binding. Our results suggest that on average, individuals
8 reach a striatal amyloid threshold of 1.25 SUVR at 38.4 years and 1.55 SUVR at 42.2 years,
9 indicating that in some cases, striatal accumulation precedes cortical amyloid. The non-
10 uniformity of pathological accumulation in striatal amyloid may provide evidence for subtypes
11 of spatial amyloid distribution, which has previously only been reported in sporadic Alzheimer
12 Disease^{50,51}. This warrants additional investigation in future studies in individuals with Down
13 syndrome.

14 Prior work in this cohort using only cross-sectional data reported elevation of plasma pTau217
15 over sibling controls at 38.9 years of age¹⁹ but the apparent intra-individual variability in
16 longitudinal data resulted in wider confidence intervals, indicating that participants with Down
17 syndrome had elevated plasma pTau217 levels over the reference population at age 46.1. This
18 corresponds roughly to the age at which we expect individuals to reach an average of 50 CL of
19 cortical amyloid burden (Figure 2C) and is consistent with autopsy research in sAD. Salvado and
20 colleagues compared plasma pTau217 (Lilly MSD) with neuropathological findings, observing
21 that plasma pTau217 did not substantially increase until individuals had intermediate-to-high
22 scores for Alzheimer Disease Neuropathic Change (ADNC)⁵². Efforts to translate ADNC scores
23 to quantitative PET CL values suggest that intermediate ADNC corresponds to an average value
24 of 49.4 CL⁵³. Our findings that plasma pTau217 (Lilly MSD) only elevates significantly around
25 50 CL is aligned with these post-mortem studies and highlights that it may not be sensitive to
26 emerging cortical amyloid burden but is highly accurate once widespread cortical amyloid has
27 developed.

28 This was later than our estimated elevated tau PET threshold of 42.4 years. This discrepancy
29 could be due to multiple factors including (1) the critical location of tau hyperphosphorylation in
30 Down syndrome is not at amino acid 217 (although there is work to suggest that *DYRK1A*
31 promotes phosphorylation at this site²⁹). Perhaps, instead, tau phosphorylated at 212, as

1 promoted by *DYRK1A*⁴, may be a more useful biomarker in this population²⁹; (2) the relatively
2 high intra-individual variability of this assay⁵⁴ as plasma pTau217 performance is highly assay
3 dependent. A different assay may detect earlier changes³⁸. A performance comparison of both
4 assays and sites of tau phosphorylation is needed in this population similar to work in
5 neurotypical populations⁵⁵.

6 Plasma pTau217's ability to both detect existing pathology and predict future accumulation in
7 Down syndrome were comparable to age alone, except in the case of relatively high thresholds.
8 While plasma pTau217 is widely used for detecting amyloid plaques^{31,38,56} and tau tangles^{27,39} in
9 other causes of Alzheimer Disease, the strong age dependence of Alzheimer Disease pathology
10 in Down syndrome^{1,7,8} may limit its value in this population, particularly when we are interested
11 in early detection of pathology. In contrast, baseline PET measures (cortical amyloid, striatal
12 amyloid, and tau burden) were more reliable predictors of future amyloid and tau accumulation
13 measured compared to age. Our results align with prior studies in sporadic Alzheimer Disease
14 that found that a baseline amyloid PET threshold of 15.7 CL predicts future accumulation at 3
15 CL/year (sensitivity = 0.61, specificity = 0.83)²⁵. In our Down syndrome cohort, a lower baseline
16 threshold of 11.7 CL predicted accumulation at \geq 3.8 CL/year (sensitivity = 0.766, specificity =
17 0.707). These similarities likely speak more to the level of noise inherent in amyloid PET tracers
18 than biological differences between different Alzheimer Disease etiologies. The AMYPAD
19 consortium recommends that clinicians consider 10 – 30 CL as the range of “emerging amyloid
20 pathology” where pathology is evolving toward positivity⁴⁸. Our finding that 11.7 CL predicts
21 accumulation is consistent with this range and supports the notion that amyloid PET positivity is
22 likely imminent for individuals above this threshold. Work has not yet been conducted in
23 sporadic Alzheimer Disease to investigate thresholds for reliable accumulation of tau PET, but
24 here, in this first longitudinal study of tau PET in Down syndrome, we observe that a baseline
25 tau burden of 1.22 SUVR is sufficient. This result is consistent with the published threshold for
26 tau PET positivity⁴⁴ and predicts future accumulation of at least 0.17 SUVR/year with a similar
27 degree of accuracy as cortical amyloid burden (sensitivity = 0.818, specificity = 0.795).

28 This study has limitations. First, multiple commercial assays exist for the quantification of
29 plasma pTau217 and these assays differ⁵⁵. The generalizability of our findings to assays beyond
30 those used in this study remains unknown. Second, a conceptual mismatch between plasma-
31 based measures of tau phosphorylation and PET-based measures of Alzheimer Disease

1 pathology exists. Measures derived from biofluids reflect a dynamic state of clearance, while
2 PET-binding reflects the cumulative deposition of the pathology of interest. Thus, plasma
3 pTau217 may exhibit a saturation effect where individuals with advanced pathology do not show
4 proportionally higher concentrations due to physiological limits on clearance. In contrast, PET
5 signal continues to rise until substantial cerebral atrophy limits detectability, often beyond the
6 point at which imaging is still feasible for the individual participant. These differences may
7 complicate interpretation of the association between these two types of biomarkers at higher
8 levels of pathology. Third, the existence of an amyloid probability score (APS) has been shown
9 to have even better predictive capacity than plasma pTau217 alone⁵⁷. While the age- and APOE-
10 associated risks of increased cortical amyloid burden are distinct in Down Syndrome and cannot
11 be generalized from published work in sporadic Alzheimer Disease, future work with larger
12 sample size could independently construct and validate appropriate model weights for a Down
13 Syndrome-specific APS score that may reduce discordance in classification by plasma-based
14 biomarkers as compared to PET. Finally, as with any neuroimaging study in individuals with
15 Down Syndrome, challenges related to scan tolerability and motion introduce selection bias.
16 Participants able to complete imaging protocols are likely healthier and have higher baseline
17 cognitive function. Work exclusively in fluid biomarkers is vitally important in this population to
18 expand access and generalizability of findings, and the results of this study facilitate future
19 biofluid-only work.

20 For clinicians interested in determining when preclinical Alzheimer Disease pathology is present
21 in the brain of individuals with Down syndrome, PET imaging is currently the best tool to use.
22 Amyloid and tau PET offer the best *in vivo* quantification of current plaque and tangle load in the
23 brain and have the greatest sensitivity and specificity in predicting near future accumulation of
24 amyloid. If PET imaging is not feasible, age is the next best measure, acknowledging that there
25 is heterogeneity in pathological progression. Prior work in Down syndrome identified that 5% of
26 individuals aged 35 – 39 are amyloid positive while 90% of individuals aged 55 – 59 are amyloid
27 positive -- a 25-year range over which individuals with Down syndrome are likely to develop
28 amyloid⁸ -- and our study found that plasma pTau217 (Lilly MSD) does not provide substantially
29 more predictive value than participant age. Future research should explore alternative plasma
30 biomarker assays, cerebrospinal fluid-derived biomarkers, and investigate the biological
31 mechanisms underlying the observed variability in striatal and plasma markers. Validation

1 relative to gold standard pathological diagnoses from postmortem examination also remains to be
2 completed.

3

4 **Data availability**

5 The data used in this analysis are available on request. Applications are reviewed by the ABC-
6 DS publications committee. The data request application is available at
7 <https://www.nia.nih.gov/research/abc-ds#available-data>.

8

9 **Acknowledgements**

10 We are grateful to the adults with Down syndrome, their siblings, and their families and care
11 providers, as well as the ABC-DS research and support staff, for their invaluable contributions to
12 this study. All research at the Department of Psychiatry in the University of Cambridge is
13 supported by the NIHR Cambridge Biomedical Research Centre (BRC-1215-20014) and NIHR
14 Applied Research Centre. We also acknowledge the additional support provided by the Barnes-
15 Jewish Hospital Foundation, the Charles F and Joanne Knight Alzheimer's Research Initiative,
16 the Hope Center for Neurological Disorders, the Mallinckrodt Institute of Radiology, the Paula
17 and Rodger Riney fund, and the Daniel J Brennan MD fund. The views expressed in this Article
18 are those of the authors and not necessarily those of the National Institute for Health, the NIHR
19 or the Department of Health and Social Care.

20

21 **Funding**

22 Data collection and sharing for this project was supported by the ABC-DS (U01AG051406,
23 U01AG051412, and U19 AG068054-04), funded by the National Institute on Aging and the
24 Eunice Kennedy Shriver National Institute of Child Health and Human Development. This
25 manuscript is the result of funding in whole or in part by the National Institutes of Health (NIH).
26 It is subject to the NIH Public Access Policy. Through acceptance of this federal funding, NIH

1 has been given a right to make this manuscript publicly available in PubMed Central upon the
2 Official Date of Publication, as defined by NIH.

3

4 Competing interests

5 BLH has received research funding from Roche and Autism Speaks; receives royalties from
6 Oxford University Press for book publications; and is the chair of the data safety and monitoring
7 board for the Department of Defense-funded study, “Comparative Effectiveness of EIBI and
8 MABA”. BTC receives research funding from the National Institutes of Health. EH receives
9 research funding from the National Institutes of Health and the BrightFocus Foundation. FL is
10 supported by grants from the National Institute on Aging. HDR has received funding from the
11 National Institutes of Health and is on the scientific advisory committee for the Hereditary
12 Disease Foundation. JHL has received research funding from the National Institutes of Health
13 and the National Institute on Aging. BMA receives research funding from the National Institutes
14 of Health and has a patent (“Markers of Neurotoxicity in CAR T patients”). MSR has received
15 consulting fees from AC Immune and Ionis, Alzheon, Alnylam, Biohaven, Embic, Positrigo and
16 Prescient Imaging. He has received research support from the National Institutes of Health, Eisai
17 and Lilly.. All other authors declare no competing interests.

18

19 Supplementary material

20 Supplementary material is available at *Brain* online.

21

22 References

- 23 1. Lott IT, Head E. Alzheimer disease and Down syndrome: factors in pathogenesis. *Neurobiol*
24 *Aging*. 2005;26(3):383-389. doi:10.1016/j.neurobiolaging.2004.08.005
- 25 2. Rafii MS, Ances BM, Schupf N, et al. The AT(N) framework for Alzheimer’s disease in
26 adults with Down syndrome. *Alzheimer’s & Dementia: Diagnosis, Assessment & Disease*
27 *Monitoring*. 2020;12(1). doi:10.1002/dad2.12062

1 3. Snyder HM, Bain LJ, Brickman AM, et al. Further understanding the connection between
2 Alzheimer's disease and Down syndrome. *Alzheimer's & Dementia*. 2020;16(7):1065-1077.
3 doi:10.1002/alz.12112

4 4. Cárdenas AM, Ardiles AO, Barraza N, Baéz-Matus X, Caviedes P. Role of Tau Protein in
5 Neuronal Damage in Alzheimer's Disease and Down Syndrome. *Arch Med Res*.
6 2012;43(8):645-654. doi:10.1016/j.arcmed.2012.10.012

7 5. Fortea J, Zaman SH, Hartley S, Rafii MS, Head E, Carmona-Iragui M. Alzheimer's disease
8 associated with Down syndrome: a genetic form of dementia. *Lancet Neurol*.
9 2021;20(11):930-942. doi:10.1016/S1474-4422(21)00245-3

10 6. Iulita MF, Garzón Chavez D, Klitgaard Christensen M, et al. Association of Alzheimer
11 Disease With Life Expectancy in People With Down Syndrome. *JAMA Netw Open*.
12 2022;5(5):e2212910. doi:10.1001/jamanetworkopen.2022.12910

13 7. Zammit MD, Betthauser TJ, McVea AK, et al. Characterizing the emergence of amyloid and
14 tau burden in Down syndrome. *Alzheimer's & Dementia*. Published online August 29, 2023.
15 doi:10.1002/alz.13444

16 8. Krasny S, Yan C, Hartley SL, et al. Assessing amyloid PET positivity and cognitive function
17 in Down syndrome to guide clinical trials targeting amyloid. *Alzheimer's & Dementia*.
18 2024;20(8):5570-5577. doi:10.1002/alz.14068

19 9. Mengel D, Liu W, Glynn RJ, et al. Dynamics of plasma biomarkers in Down syndrome: the
20 relative levels of A β 42 decrease with age, whereas NT1 tau and NfL increase. *Alzheimers
21 Res Ther*. 2020;12(1):27. doi:10.1186/s13195-020-00593-7

22 10. Sims JR, Zimmer JA, Evans CD, et al. Donanemab in Early Symptomatic Alzheimer
23 Disease. *JAMA*. 2023;330(6):512. doi:10.1001/jama.2023.13239

24 11. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in Early Alzheimer's Disease. *New
25 England Journal of Medicine*. 2023;388(1):9-21. doi:10.1056/NEJMoa2212948

26 12. Boerwinkle AH, Gordon BA, Wisch J, et al. Comparison of amyloid burden in individuals
27 with Down syndrome versus autosomal dominant Alzheimer's disease: a cross-sectional
28 study. *Lancet Neurol*. 2023;22(1):55-65. doi:10.1016/S1474-4422(22)00408-2

1 13. McLachlan M, Bettcher B, McVea A, et al. The striatum is an early, accurate indicator of
2 amyloid burden using [¹¹C]PiB in Down syndrome: comparison of two radiotracers.
3 *medRxiv*. Published online December 6, 2024. doi:10.1101/2024.12.04.24318526

4 14. Tudorascu DL, Anderson SJ, Minhas DS, et al. Comparison of longitudinal A β in
5 nondemented elderly and Down syndrome. *Neurobiol Aging*. 2019;73:171-176.
6 doi:10.1016/j.neurobiolaging.2018.09.030

7 15. Lao PJ, Handen BL, Betthauser TJ, et al. Longitudinal changes in amyloid positron emission
8 tomography and volumetric magnetic resonance imaging in the nondemented Down
9 syndrome population. *Alzheimer's & Dementia: Diagnosis, Assessment & Disease*
10 *Monitoring*. 2017;9(1):1-9. doi:10.1016/j.dadm.2017.05.001

11 16. Chhatwal JP, Schultz SA, McDade E, et al. Variant-dependent heterogeneity in amyloid β
12 burden in autosomal dominant Alzheimer's disease: cross-sectional and longitudinal
13 analyses of an observational study. *Lancet Neurol*. 2022;21(2):140-152. doi:10.1016/S1474-
14 4422(21)00375-6

15 17. Villemagne VL, Burnham S, Bourgeat P, et al. Amyloid β deposition, neurodegeneration,
16 and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study. *Lancet*
17 *Neurol*. 2013;12(4):357-367. doi:10.1016/S1474-4422(13)70044-9

18 18. Zammit MD, Tudorascu DL, Laymon CM, et al. PET measurement of longitudinal amyloid
19 load identifies the earliest stages of amyloid-beta accumulation during Alzheimer's disease
20 progression in Down syndrome. *Neuroimage*. 2021;228.
21 doi:10.1016/j.neuroimage.2021.117728

22 19. Boerwinkle AH, Wisch JK, Handen BL, et al. The mediating role of plasma glial fibrillary
23 acidic protein in amyloid and tau pathology in Down's syndrome. *Alzheimer's & Dementia*.
24 Published online November 13, 2024. doi:10.1002/alz.14359

25 20. Jennings D, Seibyl J, Sabbagh M, et al. Age dependence of brain β -amyloid deposition in
26 Down syndrome. *Neurology*. 2015;84(5):500-507. doi:10.1212/WNL.0000000000001212

27 21. Davidson YS, Robinson A, Prasher VP, Mann DMA. The age of onset and evolution of
28 Braak tangle stage and Thal amyloid pathology of Alzheimer's disease in individuals with
29 Down syndrome. *Acta Neuropathol Commun*. 2018;6(1):56. doi:10.1186/s40478-018-0559-4

1 22. Fortea J, Vilaplana E, Carmona-Iragui M, et al. Clinical and biomarker changes of
2 Alzheimer's disease in adults with Down syndrome: a cross-sectional study. *The Lancet*.
3 2020;395(10242):1988-1997. doi:10.1016/S0140-6736(20)30689-9

4 23. Rafii MS, Lukic AS, Andrews RD, et al. PET Imaging of Tau Pathology and Relationship to
5 Amyloid, Longitudinal MRI, and Cognitive Change in Down Syndrome: Results from the
6 Down Syndrome Biomarker Initiative (DSBI). *Journal of Alzheimer's Disease*.
7 2017;60(2):439-450. doi:10.3233/JAD-170390

8 24. Bejanin A, Iulita MF, Vilaplana E, et al. Association of Apolipoprotein E ε4 Allele With
9 Clinical and Multimodal Biomarker Changes of Alzheimer Disease in Adults With Down
10 Syndrome. *JAMA Neurol*. 2021;78(8):937. doi:10.1001/jamaneurol.2021.1893

11 25. Bollack A, Collij LE, García DV, et al. Investigating reliable amyloid accumulation in
12 Centiloids: Results from the AMYPAD Prognostic and Natural History Study. *Alzheimer's
& Dementia*. 2024;20(5):3429-3441. doi:10.1002/alz.13761

14 26. Pichet Binette A, Franzmeier N, Spotorno N, et al. Amyloid-associated increases in soluble
15 tau relate to tau aggregation rates and cognitive decline in early Alzheimer's disease. *Nat
Commun*. 2022;13(1):6635. doi:10.1038/s41467-022-34129-4

17 27. Barthelemy N, Saef B, Li Y, et al. CSF tau phosphorylation occupancies at T217 and T205
18 represent improved biomarkers of amyloid and tau pathology in Alzheimer's disease. *Nat
Aging*. Published online March 2023.

20 28. Barthélémy NR, Horie K, Sato C, Bateman RJ. Blood plasma phosphorylated-tau isoforms
21 track CNS change in Alzheimer's disease. *Journal of Experimental Medicine*. 2020;217(11).
22 doi:10.1084/jem.20200861

23 29. Kac PR, Alcolea D, Montoliu-Gaya L, et al. Plasma p-tau212 as a biomarker of sporadic and
24 Down Syndrome Alzheimer's disease. Published online November 2, 2024.
25 doi:10.1101/2024.10.31.24316469

26 30. Janelidze S, Christian BT, Price J, et al. Detection of Brain Tau Pathology in Down
27 Syndrome Using Plasma Biomarkers. *JAMA Neurol*. 2022;79(8):797.
28 doi:10.1001/jamaneurol.2022.1740

1 31. Horie K, Salvadó G, Koppisetti RK, et al. Plasma MTBR-tau243 biomarker identifies tau
2 tangle pathology in Alzheimer's disease. *Nat Med*. Published online March 31, 2025.
3 doi:10.1038/s41591-025-03617-7

4 32. Granholm AC, Hamlett ED. The Role of Tau Pathology in Alzheimer's Disease and Down
5 Syndrome. *J Clin Med*. 2024;13(5):1338. doi:10.3390/jcm13051338

6 33. Janelidze S, Stomrud E, Smith R, et al. Cerebrospinal fluid p-tau217 performs better than p-
7 tau181 as a biomarker of Alzheimer's disease. *Nat Commun*. 2020;11(1).
8 doi:10.1038/s41467-020-15436-0

9 34. Ashton NJ, Janelidze S, Mattsson-Carlgren N, et al. Differential roles of A β 42/40, p-tau231
10 and p-tau217 for Alzheimer's trial selection and disease monitoring. *Nat Med*. Published
11 online 2022. doi:10.1038/s41591-022-02074-w

12 35. Yu L, Boyle PA, Janelidze S, et al. Plasma p-tau181 and p-tau217 in discriminating PART,
13 AD and other key neuropathologies in older adults. *Acta Neuropathol*. 2023;146(1):1-11.
14 doi:10.1007/s00401-023-02570-4

15 36. Milà-Alomà M, Ashton NJ, Shekari M, et al. Plasma p-tau231 and p-tau217 as state markers
16 of amyloid- β pathology in preclinical Alzheimer's disease. *Nat Med*. Published online
17 August 11, 2022. doi:10.1038/s41591-022-01925-w

18 37. Barthelemy N, Saef B, Horie K, et al. The relationship of soluble p-tau isoforms with brain
19 amyloid and tau deposition in sporadic AD. In: *Alzheimer's Association International
20 Conference*. ALZ; 2022.

21 38. Schindler SE, Petersen KK, Saef B, et al. Head-to-head comparison of leading blood tests for
22 Alzheimer's disease pathology. *Alzheimer's & Dementia*. 2024;20(11):8074-8096.
23 doi:10.1002/alz.14315

24 39. Woo MS, Therriault J, Jonaitis EM, et al. Identification of late-stage tau accumulation using
25 plasma phospho-tau217. *EBioMedicine*. 2024;109:105413.
26 doi:10.1016/j.ebiom.2024.105413

27 40. Hendrix JA, Airey DC, Britton A, et al. Cross-Sectional Exploration of Plasma Biomarkers
28 of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation

1 for Enhancing Down Syndrome Research (LIFE-DSR) Study. *J Clin Med.* 2021;10(9):1907.
2 doi:10.3390/jcm10091907

3 41. Wisch JK, McKay NS, Boerwinkle AH, et al. Comparison of tau spread in people with
4 Down syndrome versus autosomal dominant Alzheimer's disease: a cross-sectional study .
5 *Lancet Neurol.* Published online 2024.

6 42. Zammit MD, DiFilippo AH, Tullis T, et al. Elevated neurofibrillary tau levels emerge with
7 subthreshold A β accumulation in Down syndrome. *Alzheimer's & Dementia.* 2021;17(S1).
8 doi:10.1002/alz.055027

9 43. Schworer EK, Zammit MD, Wang J, et al. Timeline to symptomatic Alzheimer's disease in
10 people with Down syndrome as assessed by amyloid-PET and tau-PET: a longitudinal cohort
11 study. *Lancet Neurol.* 2024;23(12):1214-1224. doi:10.1016/S1474-4422(24)00426-5

12 44. Mishra S, Gordon BA, Su Y, et al. AV-1451 PET imaging of tau pathology in preclinical
13 Alzheimer disease: Defining a summary measure. *Neuroimage.* 2017;161:171-178.
14 doi:10.1016/j.neuroimage.2017.07.050

15 45. Su Y, D'Angelo GM, Vlassenko AG, et al. Quantitative analysis of PiB-PET with
16 FreeSurfer ROIs. *PLoS One.* 2013;8(11). doi:10.1371/journal.pone.0073377

17 46. Su Y, Flores S, Hornbeck RC, et al. Utilizing the Centiloid scale in cross-sectional and
18 longitudinal PiB PET studies. *Neuroimage Clin.* 2018;19:406-416.
19 doi:10.1016/j.nicl.2018.04.022

20 47. Yoshida K, ... JB 30 M 2017) https://CRAN. R project. org/package, 2015 undefined.
21 Tableone: create "Table 1" to describe baseline characteristics. R package version 0.7. 3.

22 48. Collij LE, Bollack A, La Joie R, et al. Centiloid recommendations for clinical context-of-use
23 from the AMYPAD consortium. *Alzheimer's & Dementia.* 2024;20(12):9037-9048.
24 doi:10.1002/alz.14336

25 49. Devanarayan V, Doherty T, Charil A, et al. Plasma pTau217 predicts continuous brain
26 amyloid levels in preclinical and early Alzheimer's disease. *Alzheimer's & Dementia.*
27 Published online June 28, 2024. doi:10.1002/alz.14073

1 50. Collij LE, Salvadó G, Wottschel V, et al. Spatial-Temporal Patterns of β -Amyloid
2 Accumulation. *Neurology*. 2022;98(17). doi:10.1212/WNL.0000000000200148

3 51. Giorgio J, Mundada NS, Blazhenets G, et al. Data-driven analysis of 10,361 amyloid-PET
4 scans from the IDEAS study reveals two primary axes of variation. *Alzheimer's & Dementia*.
5 2024;20(S9). doi:10.1002/alz.093934

6 52. Salvadó G, Ossenkoppele R, Ashton NJ, et al. Specific associations between plasma
7 biomarkers and postmortem amyloid plaque and tau tangle loads. *EMBO Mol Med*.
8 Published online March 13, 2023. doi:10.15252/emmm.202217123

9 53. Amadoru S, Doré V, McLean CA, et al. Comparison of amyloid PET measured in Centiloid
10 units with neuropathological findings in Alzheimer's disease. *Alzheimers Res Ther*.
11 2020;12(1):22. doi:10.1186/s13195-020-00587-5

12 54. Brum WS, Ashton NJ, Simrén J, et al. Biological variation estimates of Alzheimer's
13 disease plasma biomarkers in healthy individuals. *Alzheimer's & Dementia*.
14 2024;20(2):1284-1297. doi:10.1002/alz.13518

15 55. Ashton NJ, Keshavan A, Brum WS, et al. The Alzheimer's Association Global Biomarker
16 Standardization Consortium (GBSC) plasma phospho-tau Round Robin study. *Alzheimer's
& Dementia*. 2025;21(2). doi:10.1002/alz.14508

18 56. Barthélémy NR, Salvadó G, Schindler SE, et al. Highly accurate blood test for Alzheimer's
19 disease is similar or superior to clinical cerebrospinal fluid tests. *Nat Med*.
20 2024;30(4):1085-1095. doi:10.1038/s41591-024-02869-z

21 57. Hu Y, Kirmess KM, Meyer MR, et al. Assessment of a Plasma Amyloid Probability Score
22 to Estimate Amyloid Positron Emission Tomography Findings Among Adults With
23 Cognitive Impairment. *JAMA Netw Open*. 2022;5(4):e228392.
24 doi:10.1001/jamanetworkopen.2022.8392
25

26 **Figure legends**

27 **Figure 1 Comparison of longitudinal Alzheimer Disease (biomarkers) in people with Down
28 Syndrome (DS) relative to the reference population (individuals with DS under age 35 and**

1 **pathology negative) as a function of age/estimated years to symptom onset.** (A) People with
2 DS have significantly elevated levels of cortical amyloid burden at 39.6 years of age. (B) People
3 with DS have significantly elevated levels of striatal amyloid binding (PiB-only) at 39.2 years.
4 (C) Individuals with DS had significantly elevated plasma pTau217 relative to healthy
5 individuals with DS at age 46.1 years. (D) People with DS have significantly elevated levels of
6 summary tau burden at an average age of 42.4.

7

8 **Figure 2 Evaluation of Plasma pTau217 to detect current super-threshold biomarker levels.**
9 The correlations between baseline measurements of plasma pTau217 and cortical amyloid
10 burden (A), striatal amyloid burden (E) and summary tau burden (I) are statistically significant
11 and fairly similar ($r = 0.40 - 0.57$) We identified the optimal age-based and plasma pTau217
12 threshold to predict pathological positivity for cortical amyloid burden (C), striatal amyloid
13 burden (F), and summary tau burden (I). We compared the utility of plasma pTau217 and age,
14 finding that for individuals with DS, plasma pTau217 (solid lines) does not have greater
15 predictive ability of pathological positivity than age (dashed lines) for cortical amyloid burden
16 (B) or striatal amyloid burden (E). There may be a marginal advantage offered by plasma
17 pTau217 (solid lines) in predicting tau positivity off relative to low (1.1 SUVR) or high (1.58
18 SUVR) summary tau cutoffs (H), but there is no difference in performance by age or plasma
19 pTau217 for the previously published summary tau burden cutoff of 1.22 SUVR. For each
20 threshold, the corresponding color is given first in the plots comparing the optimal threshold for
21 plasma pTau217 and age (C, F, I) and then applied consistently to the ROC curve (B, E, H), such
22 that red always corresponds to the lowest biomarker threshold and blue always corresponds to
23 the highest biomarker threshold.

24

25 **Figure 3 Comparison of Annualized Rates of Biomarker Accumulation Across Age Groups.**

26 After defining a normative group for individuals with DS as people younger than 35, we
27 estimated the 95th percentile for the annualized rate of change from this cohort. We then
28 compared this rate of accumulation for the four biomarkers of interest (Cortical amyloid burden
29 [A], Striatal amyloid burden [B], plasma pTau217 [C], and summary tau burden [D]) to the
30 observed data, stratifying by age. Visual inspection suggests very few individuals under the age

1 of 35 exceed the abnormal rate of accumulation for each biomarker, while many, but not all,
2 individuals over 35 do. Individuals are most likely to be reliable accumulators for all biomarkers
3 between the ages of 41 and 50, while individuals both older and younger than that at baseline
4 have lower frequencies of reliable accumulation.

5

6 **Figure 4 Evaluation of baseline biomarker levels to forecast future pathological**
7 **accumulation.** Vertical dashed lines on scatter plots indicate the optimal threshold for reliable
8 accumulation status prediction. After 11.7 CL, individuals are most likely to accumulate future
9 amyloid (A), although there is a relatively high degree of variability (B). After 1.31 SUVR,
10 individuals are likely to accumulate future striatal amyloid (C). This baseline threshold is highly
11 reliable (D). After 0.652 pg/mL, individuals are likely to accumulate higher plasma pTau217
12 levels (E). This threshold is highly sensitive, but with moderate specificity (F). After 1.22
13 SUVR, individuals are likely to accumulate additional tau burden (G). In this cohort of primarily
14 cognitively intact individuals with DS, there are relatively few instances where individuals are
15 likely to accumulate future tau burden, but for available samples, this baseline threshold offers
16 good sensitivity and specificity (H).

17

18 **Figure 5 Evaluation of baseline plasma pTau217 and age to forecast future pathological**
19 **accumulation.** Vertical dashed lines on scatter plots indicate the optimal threshold for reliable
20 accumulation status prediction. Participants over the age of 38 (A) and with plasma pTau217
21 values over 0.277 pg/mL (B) are most likely to reliably accumulate cortical amyloid in future
22 visits. Age is a better predictor of future cortical amyloid accumulation than plasma pTau217
23 (C). Participants over the age of 41 (D) and with plasma pTau217 values over 0.383 pg/mL (F)
24 are most likely to accumulate future striatal amyloid, and the performance of these two markers
25 are roughly equivalent at predicting future striatal amyloid accumulation (E). Participants over
26 the age of 35 (G) and with plasma pTau217 values over 0.513 pg/mL (I) are most likely to
27 accumulate future tau burden, and the performance of these two markers are roughly equivalent
28 (H).

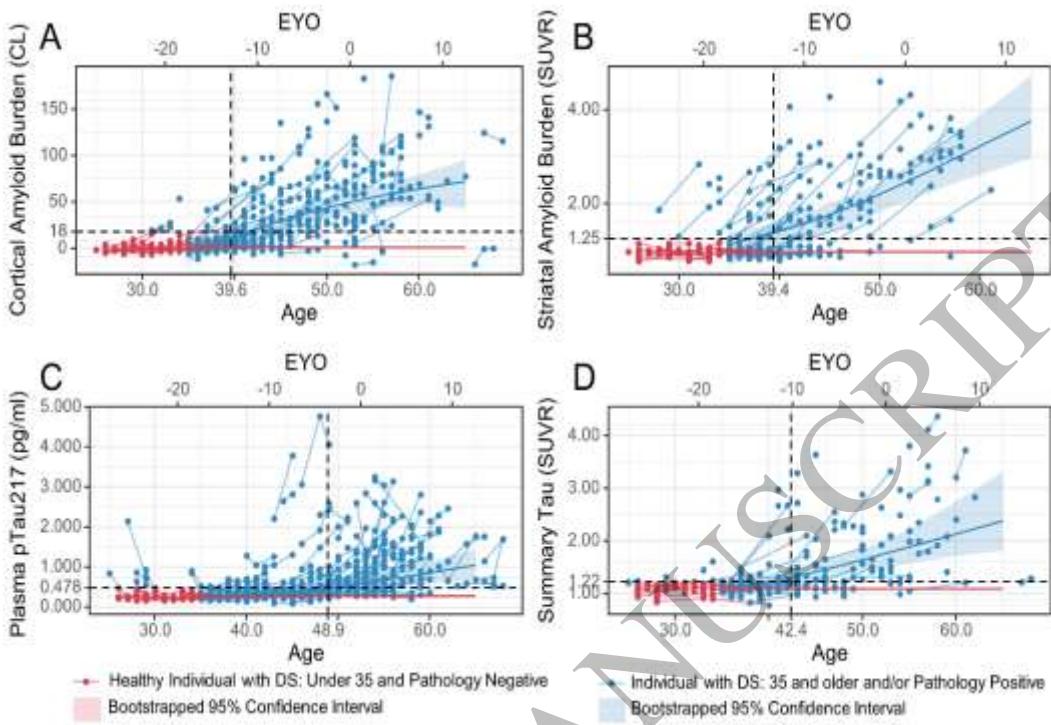


Figure 1
207x128 mm (x DPI)

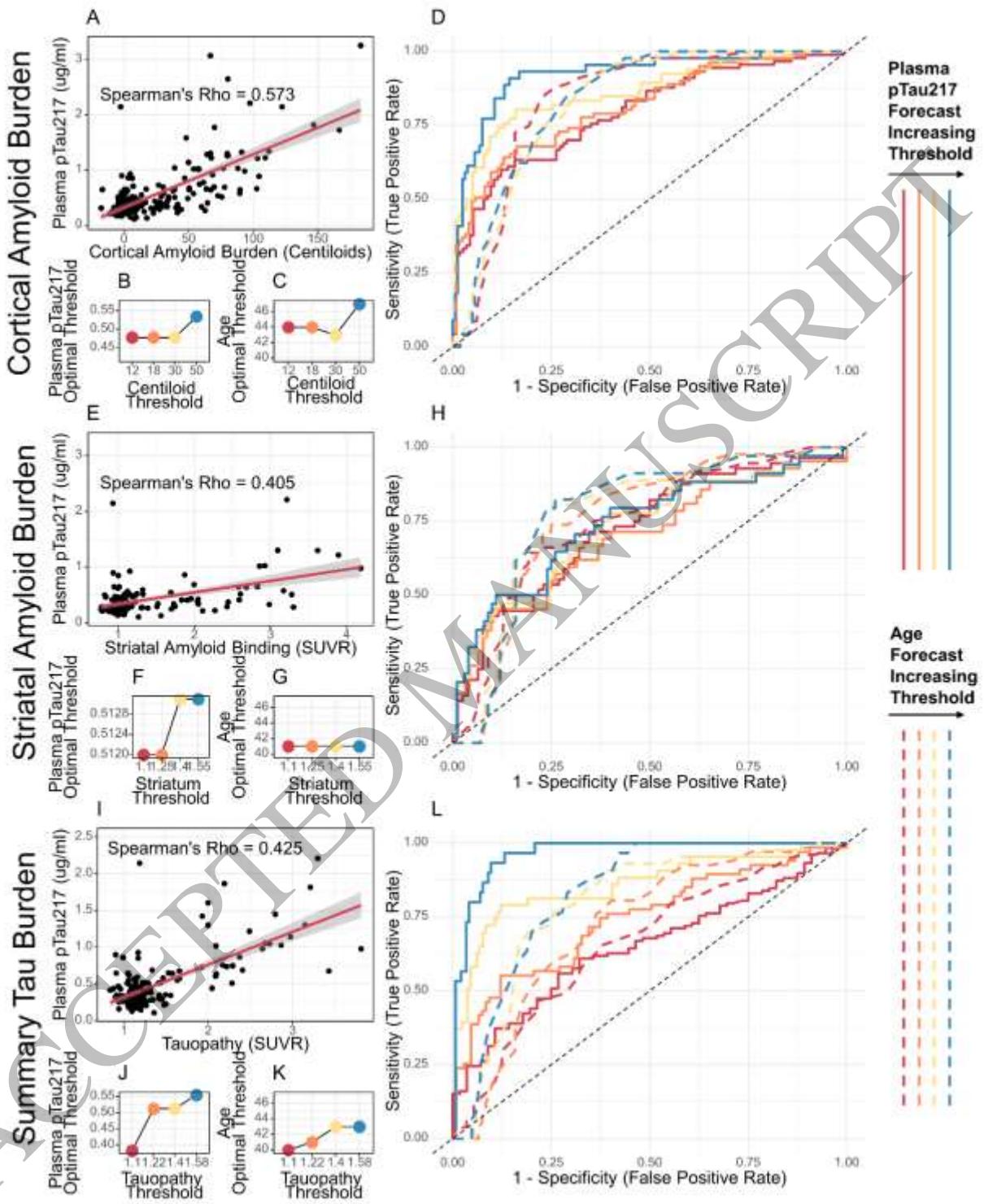


Figure 2
282x337 mm (x DPI)

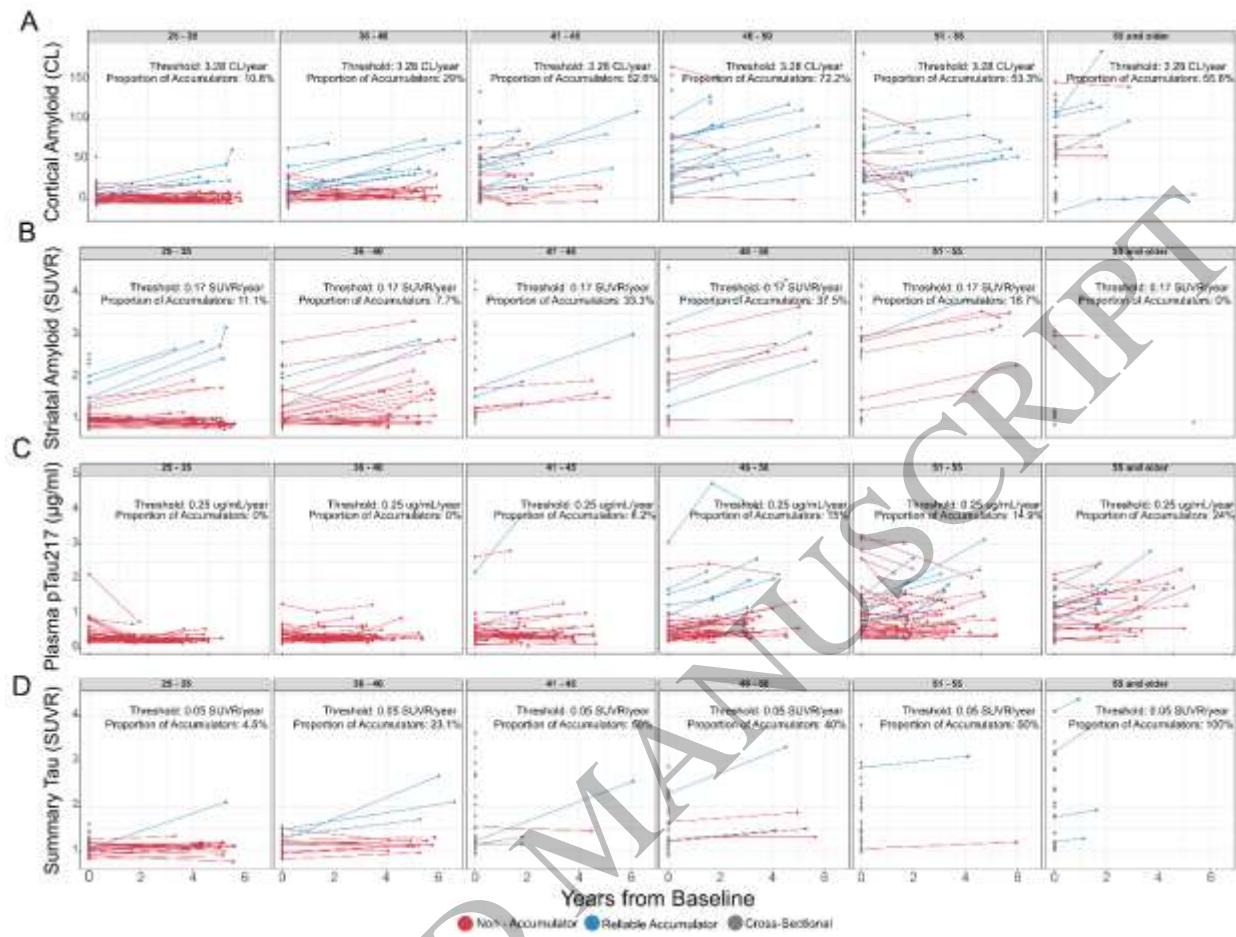


Figure 3
559x418 mm (x DPI)

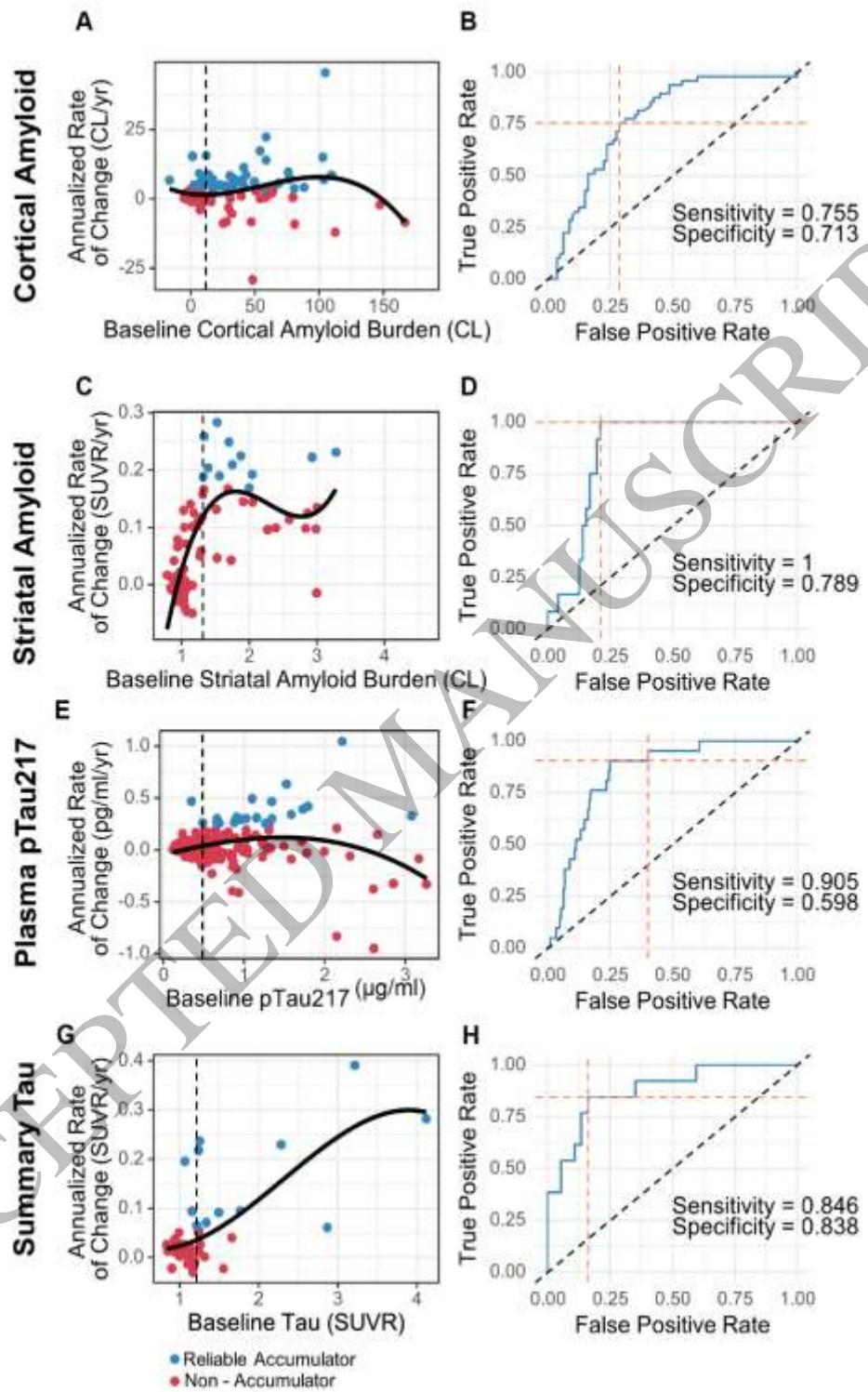


Figure 4
153x230 mm (x DPI)

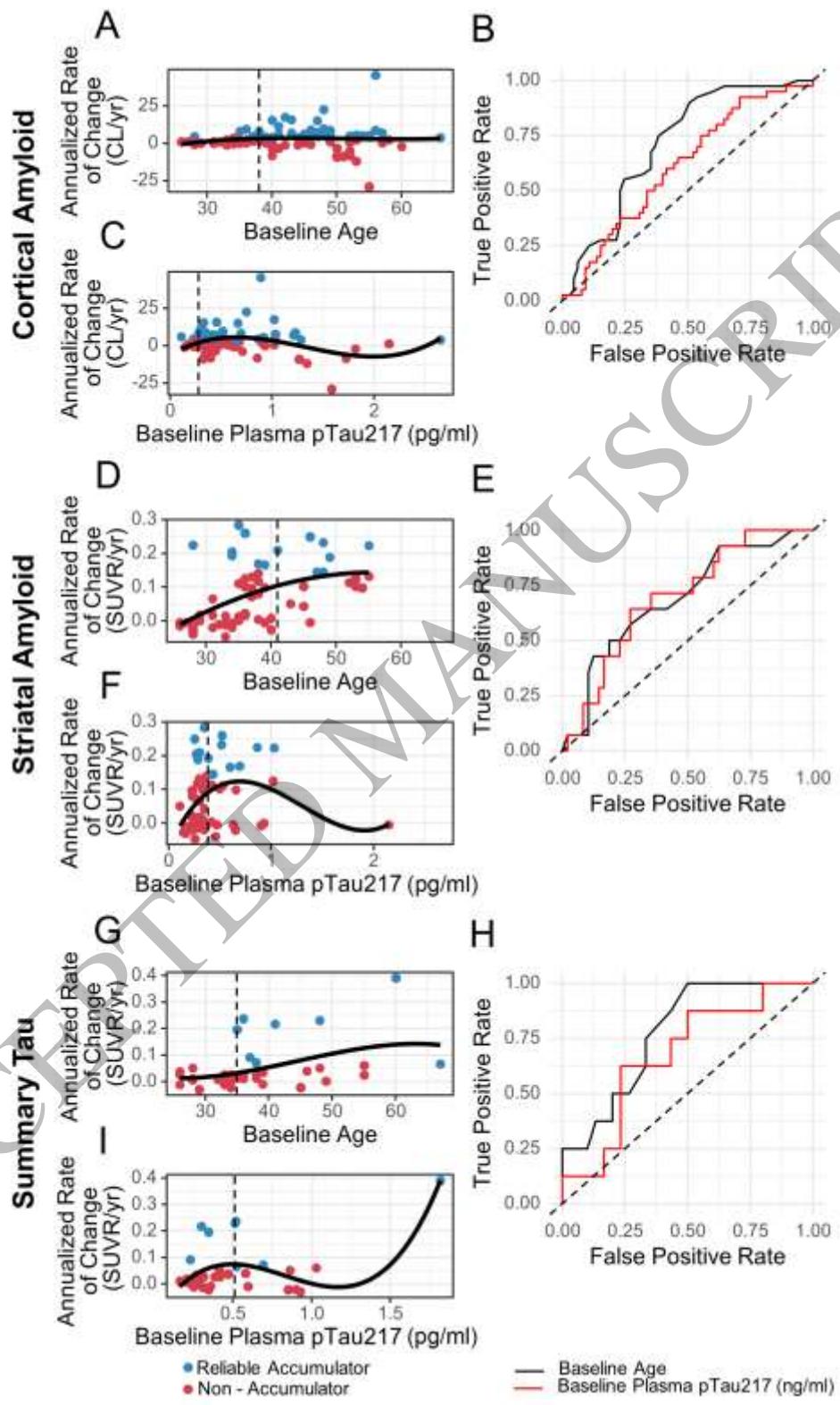


Figure 5
148x242 mm (x DPI)

1 **Table 1 Participant demographics**

	All Participants with DS	Reference Population	Aging Adults with DS	p
n	328	61	267	
Age at Baseline, mean (SD)	43.13 (9.54)	30.31 (2.83)	46.06 (7.98)	<0.001
Gender, n (% female)	138 (42.1)	23 (37.7)	115 (43.1)	0.534
Self-reported Race, n (%)				0.473
American Indian/Alaskan Native	1 (0.3)	0 (0.0)	1 (0.4)	
Asian	5 (1.5)	1 (1.6)	4 (1.5)	
Black/African-American/African/Caribbean	3 (0.9)	0 (0.0)	3 (1.1)	
Not Reported	4 (1.2)	2 (3.3)	2 (0.7)	
White	315 (96.0)	58 (95.1)	257 (96.3)	
APOE4 Carrier, n (%)				0.523
0 copies	250 (77.4)	45 (73.8)	205 (76.8)	
1 copy	67 (20.7)	12 (19.7)	55 (20.6)	
2 copies	6 (1.9)	2 (3.4)	4 (1.5)	
Consensus Cognitive Diagnosis, n (%)				<0.001
Mild Cognitive Impairment	34 (10.4)	0 (0.0)	34 (12.7)	
No Consensus	11 (3.4)	1 (1.6)	10 (3.7)	
Dementia	29 (8.8)	0 (0.0)	29 (10.9)	
Cognitively Stable	254 (77.4)	60 (98.4)	194 (72.7)	
Living Situation, n (%)				<0.001
Group Home	103 (31.6)	3 (4.9)	100 (37.7)	
Independent Living	45 (13.8)	11 (18.0)	34 (12.8)	
With Family/Caregiver	178 (54.6)	47 (77.0)	131 (49.4)	
Longitudinal Amyloid PET, n (%)	133 (40.5)	33 (54.1)	100 (34.7)	0.570
Cross-Sectional Amyloid PET, n (%)	266 (81.1)	59 (96.7)	207 (77.5)	0.001
Longitudinal Tau PET, n (%)	50 (15.2)	19 (31.1)	31 (11.6)	<0.001
Cross-Sectional Tau PET, n (%)	220 (67.1)	58 (95.1)	162 (60.7)	<0.001
Longitudinal Plasma pTau217, n (%)	225 (68.6)	32 (52.4)	193 (72.3)	0.004

2

3 **Table 2 Thresholds and measures of prediction accuracy associated with age and plasma pTau217-associated predictions of 4 pathological accumulation**

Prediction of Cortical Amyloid Accumulation	Age Threshold	Age Sensitivity	Age Specificity
	38 years	0.881	0.492
	pTau217 Threshold	pTau217 Sensitivity	pTau217 Specificity
Prediction of Striatal Amyloid Accumulation	0.27	0.929	0.286
	Age Threshold	Age Sensitivity	Age Specificity
	34 years	0.909	0.353
Prediction of Tauopathy Accumulation	pTau217 Threshold	pTau217 Sensitivity	pTau217 Specificity
	0.513	0.454	0.824
	Age Threshold	Age Sensitivity	Age Specificity
	35 years	1	0.517
	pTau217 Threshold	pTau217 Sensitivity	pTau217 Specificity
	0.513	0.667	0.793

5