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Abstract

INTRODUCTION: Gait abnormalities are associated with Alzheimer’s disease (AD)

in the general population, but it is unclear if the same is true for individuals with

Down syndrome (DS). This study examined gait across 32 months in relation to
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neuroimaging biomarkers (amyloid beta [Aβ], neurofibrillary tangles [NFTs], and

hippocampal volume), cognitive decline, and clinical AD status in adults with DS.

METHODS: Participants were 218 adults with DS who underwent Aβ and NFT

positron emission tomography (PET) and magnetic resonance imaging (MRI) scans,

cognitive testing, and gait assessments at baseline and 32 months. Residual change

regressionmodels were conducted.

RESULTS: Higher baseline Aβ PET and NFT PET and lower MRI hippocampal volume

were associated with gait declines across 32 months. Cognitive declines were associ-

ated with gait declines. Participants with clinical dementia at 32 months had greater

gait decline than those whowere cognitively stable.

DISCUSSION: Gait impairments are a key feature of DS-associated AD (DSAD). Gait

assessments could offer a quick, cost-effective, non-invasive screen for DSAD.

KEYWORDS

amyloid beta, cognitive decline, dementia, grossmotor skills, hippocampal volume, neurofibrillary
tangles of tau, trisomy 21

Highlights

∙ Those with clinical status of dementia had lower gait performance than those who

were cognitively stable.

∙ Higher baseline amyloid beta and neurofibrillary tangle volumewas associated with

more gait impairments.

∙ Lower baseline hippocampal volumewas associated withmore gait impairments.

∙ Greater decline in gait performance was associated with cognitive decline.

∙ Greater decline in gait performance was associated withmore dementia symptoms.

1 BACKGROUND

Down syndrome (DS) is a developmental disability caused by an extra

copy of chromosome 211 that occurs in ≈ 1 in 700 live births in

the United States.2 Adults with DS have a 90% lifetime risk for

Alzheimer’s disease (AD) dementia,3 which is thought to be driven by

the triplication of the amyloid precursor protein (APP) gene located

on chromosome 21.4 The presence of AD pathology in DS is similar

to sporadic AD; however, the accumulation of amyloid beta (Aβ) brain
plaques occurs several decades earlier,5–8 followed by the presence

of neurofibrillary tau tangles (NFTs),9–12 and then neurodegeneration

as evidenced by hippocampal atrophy, altered glucose metabolism,

and increased glial fibrillary acidic protein levels.13,14 Over the past

decade, the timeline of cognitive changes that reflect mild cognitive

impairment (MCI) and dementia in DS-associated AD (DSAD) has been

described15–19 andmore recently the relationshipwith Aβ plaques and
NFTs.20 However, little is known about other domains of changes in

daily functioning during the progression to DSAD.

In the general adult population, changes in gait have long been

associated with AD.21–23 Changes in gait were initially found to be

associated with later stages of AD, after the onset of dementia.24,25

Indeed, there is substantial evidence that adults with AD dementia

experience impairments in balance and gait,26–28 such as increased

postural sway29 and reduced mobility.30 Recently, gait impairments

have also been observed in individuals with MCI.31–33 Additionally,

gait impairments appear to be associated with the earliest stages

of AD development, such as early-stage Aβ deposition.32 The eti-

ology of these gait impairments may be related to disruption of

distributed thalamo–cortico–basal ganglia networks related to motor

control33,34 or to more focal changes of frontal cognitive–motor

cortical regions.35,36

It remains uncertain whether changes in gait are a feature of DSAD.

Individuals with DS have lifelong difficulties with gait,37 and addi-

tional gait impairments may occur as early as the mid-30s.38 In part,

changes in gait in middle and late adulthood may be driven by the ele-

vated prevalence of aging-related conditions in DS, such as sarcopenia

and osteoporosis,39–41 as well as atlantoaxial subluxation throughout

the lifespan.39 However, AD pathology may also contribute to gait

impairments.42 In a dual-task assessment (countingwhilewalking), Van

Pelt et al.43 found that adults with DS who had AD dementia showed

significant reductions in gait velocity compared to those who were

cognitively stable. However, this finding may be due to the cognitive

load required for a dual-task assessment. In a different study (n = 66),

the Tinetti PerformanceOrientedMobility Assessment44 (POMA, also
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known as Tinetti) Gait subscale distinguished adults with DS with MCI

and dementia from those who were cognitively stable.45 The current

study built on these prior studies by evaluating change in gait across

32months in relation to positron emission tomography (PET) andmag-

netic resonance imaging (MRI) biomarkers of AD pathology, cognitive

decline, and clinical AD status in a sample of 218 adults with DS. The

study aims were to: (1) examine gait across 32 months in relation to

baselinebiomarkers ofAβPET,NFTPET, andMRIhippocampal volume;

(2) determine whether change in gait across 32 months is associated

with change in cognitive functioning during this same interval; and (3)

compare changes in gait across 32 months based on clinical AD sta-

tus (cognitively stable,MCI, or dementia). Based on prior research,43,45

we hypothesized that changes in gait would be associated with higher

baseline Aβ and NFT PET, lowerMRI hippocampal volume, and greater

decreases in cognitive functioningacross32months.Wealsopredicted

that adults with DS who were classified as MCI and dementia at 32

months would exhibit greater declines in gait than those who were

cognitively stable.

2 METHODS

2.1 Participants

Participants were 218 adults with DS enrolled in the Alzheimer

Biomarkers Consortium-Down Syndrome (ABC-DS), a natural history

study of DSAD that includes eight data collection sites in the United

States and one in theUnitedKingdom. Study inclusion criteria included

≥ 25 years of age, mental age ≥ 4 years, genetic confirmation of DS

(trisomy 21, mosaicism, or translocation), and availability of a study

partner who could provide information on the participant with DS’s

medical history and daily function. Exclusion criteria at study entry

included contraindications to neuroimaging (e.g., metallic implants),

untreated medical conditions that could impair cognitive function, and

no prior diagnosis of AD or concerns about dementia for participants

who were not part of legacy studies leading up to ABC-DS. Informed

consent and/or assent were obtained from participants prior to study

activities. The study was approved by institutional review boards and

conducted in accordance with the Declaration of Helsinki.

2.2 Procedures

At each data collection cycle, the adult with DS and study partner

participated in a multiday study visit. The study partner was either a

parent, sibling, or caregiver who knew the participant very well. Dur-

ing this visit, the participant completed a neuropsychological battery

designed to assess cognitive, gait, and other grossmotor functions.We

used three cognitive measures from this battery (see Handen et al.46

for full battery) shown to be valid and sensitive toAD-related cognitive

decline in DS.47 The study partner reported on the participant’s med-

ical history and cognitive and behavioral functioning. The participant

with DS also underwent MRI and Aβ and NFT PET scans and a blood

RESEARCH INCONTEXT

1. Systematic review: Theoretical and empirical litera-

ture on gait changes in Down syndrome–associated

Alzheimer’s disease (DSAD) and in other forms of ADwas

reviewedusing research search databases. Relevant prior

work, including cross-sectional studies on gait in DSAD, is

cited.

2. Interpretation: Findings indicate that gait changes are

part of DSAD, occurring alongside cognitive decline,

dementia status, and neuroimaging biomarkers of amy-

loid, tau, and hippocampal volume. Gait assessments

should be part of screening for DSAD.

3. Future directions: Future studies using more sensitive

technology-based gait mats may be able to detect even

earlier subtle changes in gait related to AD pathology

and symptomology. The specific domains of gait (e.g.,

cadence, foot clearance, and step symmetry) impacted

by AD pathology and those best able to distinguish

among clinical status groups should be identified in future

research.

draw. For the current study, we analyzed data collected at the baseline

study visit and 32-month study visit of ABC-DS.

2.3 Measures

2.3.1 Demographic and health

The study partner reported participant demographic information. Col-

lected information included age (in years), sex (1 = male, 2 = female),

and ethnicity/race (categories: Hispanic or Latino,White non-Hispanic,

Black, Asian, Native Hawaiian or other Pacific Islander, American

Indian or Alaska Native, or multiple races). The study partner also

reported on the participant’s medical history. In the present study,

we examined the presence (vs. absence) of the 11 medical conditions

for any associations with gait. These conditions were: Parkinson’s dis-

ease, tremors, seizures, myoclonus, traumatic brain injury, cataracts,

vision impairments, hearing impairments, osteoarthritis, osteoporosis,

and gout. We determined apolipoprotein E (APOE) allele ε4 carrier

status via genetic testing using blood cell DNA. The level of intellec-

tual disability (ID) prior to any AD-related condition was estimated

using theKaufmanBrief IntelligenceTest, SecondEdition (KBIT-248) or

Stanford-Binet Fifth Edition Abbreviated Battery (SB549), conducted

as part of ABC-DS prior to concerns about dementia. For the subset

of participants with concerns about MCI or dementia upon entry into

ABC-DS, medical records were reviewed to find IQ scores from an

earlier prior point. Our estimated level of ID was coded as (1) mild,

(2) moderate, and (3) severe/profound, which corresponded to the
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following mental ages: mild: 9 to 14 years, moderate: 4 to 8 years, and

severe/profound: ≤ 3 years. Mental age standard scores were used

instead of IQ standard scores due to floor effects on the SB5 Abbre-

viated IQ Battery and KBIT-2, where the lowest possible IS standard

score is 40 or 46, respectively, and thus does not allow differentiation

between individuals withmoderate and severe/profound ID.

2.3.2 Gait

The Tinetti Gait and Balance assessment44 was used to measure gait.

Only the gait sub-assessment was administered. Gait was assessed

during two 15-foot walks: the first walk was completed at the par-

ticipant’s preferred pace and the second walk was at a rapid but safe

pace. Participants were scored in eight domains: indication of gait, step

length and height, foot clearance, step symmetry, step continuity, path,

trunk, and walking time. Each domain is scored from 0 to 1 (4 items) or

0 to 2 points (4 items), with amaximumof 12 points. Lower scores indi-

cate greater gait impairment and higher risk of falls.44 The Tinetti has

strong reliability and validity in the general elderly population50 and

populations with gait impairments.51,52 The Tinetti has also been used

with individuals with ID,53 including DS,45 and is correlated with other

measures of gait and gross motor skills in expected directions.54,55

2.3.3 Cognition

The Down Syndrome Mental Status Examination (DSMSE)56 is a mea-

sure of overall mental status and is used to assess AD-related cognitive

decline.56 The measure assesses recall of personal information, orien-

tation to time, immediate and delayed memory, language, visuospatial

functioning, andmotor planning in individuals with DS.3,57 TheDSMSE

can differentiate cognitively stable individualswithDS from thosewith

MCI and dementia47 and predicts transition to dementia.3

2.3.4 Memory

Themodified Cued Recall Test (mCRT)58 evaluates verbal learning and

memorybyhavingparticipants learn and then recall a series of 12 items

shown as pictures. The free recall score is the number of items the par-

ticipant recalls across three trials. If an item is not freely recalled, a

category cue is provided. The cued recall score is the number of items

remembered after being given the category prompt across the three

trials. Current analyses used the Total mCRT score, which is the sum of

the free and cued recall scores. ThemCRThas been shown to have high

sensitivity and specificity for distinguishing between cognitively stable

adults with DS and those with AD.59

2.3.5 Dementia symptoms

The National Task Group–Early Detection Screen for Dementia

(NTG)60 is an informant-report of changes in function that could indi-

cate dementia. The NTG includes 51 items across six domains: (1)

activities of daily living (7 items), (2) language and communication (6

items), (3) sleep–wake change patterns (8 items), (4) ambulation (4

items), (5) memory (9 items), and (6) behavior and affect (17 items).

Each item is rated on a 4-point scale of (1) always been the case, (2)

always but worse, (3) new symptom in the past year, and (4) does not

apply. The purpose of the NTG is to screen for early AD clinical onset

and was found to be sensitive to MCI and dementia in individuals with

DS.61

2.3.6 MRI acquisition and processing

Across sites, MRI scans were acquired on a 3T GE Discovery MR750,

Siemens Trio, Siemens Prisma, or GE Signa PET/MR. High-resolution

T1-weighted (T1w) imageswere collectedusing a3D fast spoiled gradi-

ent echo (FSPGR) ormagnetization prepared rapid acquisition gradient

echo (MPRAGE) sequence (for details see Handen et al.46). The cur-

rent study included the T1w scans that were parcellated into native

space versions of the Desikan–Killiany atlas62 using FreeSurfer v5.3.0.

Templates were formed from 12 high-quality parcellations and then

warped into each participant’s native MR space using the Advanced

Neuroimaging Tools (ANTs) software package.63,64 A final native space

atlaswas created for each scanbydetermining themaximumoverlapof

each parceled region from the12warped templates. Resultswere visu-

ally inspected toensure the final atlas adhered toeachparticipant’sMR

anatomy. In a handful of cases, the acceptable parcellations were not

produced, and thus direct application of FreeSurfer on the scan was

used instead. The participant-specific atlas was used to construct the

Braak regions.10,65 Hippocampal volume (in mm3) was parsed into left

and right volumes and then summed for total hippocampal volume.

2.3.7 PET acquisition and processing

PET scans were acquired on a PET, PET/computed tomography (CT),

or PET/MRI platform certified for multicenter studies (see Handen

et al.46), with Aβ quantified using [C-11]Pittsburgh compound B (PiB;

n = 101) or [F-18]florbetapir (n = 42) at 50 to 70 minutes post-

injection. The tau PET scans were acquired using [F-18]AV-1451 (e.g.,

[F-18]flortaucipir; n = 97) at 80 to 100 minutes post-injection. Images

were acquired in 5minute frames, corrected formotion on a frame-by-

framebasis using SPM8, and time averaged. Analyses focused on global

Aβ. PET images were registered with their corresponding anatomical

MR images. The MR scan then underwent deformable registration to

the 152-subject Montreal Neurological Institute (MNI152) template.

Co-registered PET images were warped into the MNI152 template

space using the resulting transformation matrix. Standardized uptake

value ratios (SUVR) were calculated to capture global amyloid bur-

den using the standard global region, using the whole cerebellum

for reference, and converted to Centiloids (see Klunk et al.66). The

[F-18]AV-1451 tau images were used to calculate NFT burden; PET

imageswere similarly co-registeredwith corresponding structural T1w

MRIs. Concentration of [F-18]AV-1451 was expressed as SUVR in the
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parcellation-defined Braak regions, using cerebellar gray matter as

reference.

2.3.8 Clinical AD status

Clinical AD status was determined based on a case consensus con-

ference involving a psychologist, a physician, and at least two other

research staff with expertise in DSAD. Reviewers had access to all

available cognitive scores, informant-reported measure scores, med-

ical history, recent life events, and premorbid level of ID, but were

blinded to neuroimaging results and APOE status (see Handen et al.46).

Participants were classified as: (1) cognitively stable, in which there

was no evidence of cognitive decline beyond normal signs of aging; (2)

MCI, indicating subtle and/or limited decline in cognition and/or adap-

tive behaviors; (3) AD, indicating significant declines in cognition or

adaptive behavior over an extended period of time; or (4) unable to

determine, in which changes in cognition or adaptive behaviors were

not clear in considerationof significant life eventsor changes inmedical

history (as reported by the study partner).

2.4 Statistical analyses

Statistical analyses were completed in IBM SPSS version 28.0.1.0

and R Studio version 2023.09.1. Histograms and descriptive statistics

were used to examine the distribution of variables and identify any

outliers. Baseline and 32-month Tinetti scores had a negative skew

(kurtosis = 5.36). Thus, regression models were run with both raw

Tinetti scores and with square root transformation scores. Findings

did not differ using the transformed scores, and thus, models using

raw Tinetti scores are presented to aid in interpretability. Addition-

ally, three participants were deemed to have Tinetti change scores

indicative of beingoutliers (>1.5 times the interquartile range).Models

were run both with and without these three participants. The over-

all pattern of findings did not differ when these participants were

included versus excluded. Bivariate Pearson correlations, indepen-

dent sample t tests, and one-way analysis of variance were conducted

to determine whether demographic (i.e., age, sex, race, ethnicity, tri-

somy type, and ID) or health history (i.e., Parkinson’s disease, tremors,

seizure, myoclonus, traumatic brain injury, cataracts, vision, hear-

ing, osteoarthritis, osteoporosis, and gout) variables were associated

with Tinetti scores and thus should be included as covariates in the

models.

A series of residual change regression models was conducted to

address the study aims. In all models, the 32-month Tinetti Gait score

was thedependent variable, and thebaselineTinetti score and relevant

sociodemographic variables (i.e., those significantly associatedwith the

TinettiGait score)werepredictors. Toaddress the first aimof the study,

baselineAβPET,NFTPET, andMRI hippocampal volumewere included

as predictor variables in models. Total intracranial volume (ICV) was

also included in the hippocampal volume model to control total brain

size. To address aim 2, residual change in the mCRT, DSMSE, and NTG

frombaseline to the32-month follow-upwere included as predictors in

models. These change scores were created by regressing out the effect

of baseline mCRT, DSMSE, or NTG score from the 32-month score. To

address aim 3, the 32-month clinical diagnoses (e.g., AD statuses) were

included as predictors. Significancewas set at p< 0.05. See Figure 1 for

an example populationmodel.

3 RESULTS

3.1 Preliminary analyses

Of the 358 adults with DS enrolled in ABC-DS at the baseline, 218

(61%) participants completed the Tinetti Gait assessment at baseline

and the 32-month follow-up. Independent t tests and chi-squared tests

indicated that the 218 participants included in analyses did not differ

from those who did not complete the 32-month follow-up (n = 140) in

age, sex, race, ethnicity, or ID level (p< 0.05; see Table S1 in supporting

information). On average, participants were 44.4 years old (standard

deviation [SD] = 9.20), 56% were male, and 98% self-identified as

White. Most participants had a premorbid ID level in the mild range

(56%), while 35% hadmoderate ID and 9% had severe/profound ID. At

baseline, 171 (78%) of participants were cognitively stable, 36 (17%)

had MCI, 8 (4%) had dementia, and 3 (1%) had a status of unable to

determine. By 32 months, 149 (68%) of participants were cognitively

stable, 24 (11%) had MCI, and 41 (19%) had dementia. Three partici-

pants deemed to haveMCI at baseline reverted to cognitively stable at

32 months, while all other participants with MCI at baseline (n = 33)

either remained MCI or transitioned to dementia at 32 months. Par-

ticipants classified as “unable to determine” at 32 months (N = 5; 2%)

were excluded from the model. See Table 1 for additional demographic

information.

Of the 218 participants with both Tinetti Gait scores, 206 com-

pleted the DSMSE, 186 completed the mCRT, and 204 completed the

NTG. Of the 218 participants, PET Aβ was available for 143 partici-

pants, PETNFTwas available for 97participants, andMRI hippocampal

data were available for 81 participants. The remaining participants

either did not undergo imaging or imaging was acquired but using

procedures that were not harmonized with the ones used in the cur-

rent analyses. Independent t tests and chi-squared tests indicated

that the 143 participants with imaging data did not significantly differ

from those without imaging data (n = 75) in sex, race, ethnicity, or ID

level (p < 0.05), but did significantly differ in terms of age (p < 0.05;

see Table 2). The mean age of those with imaging data with signifi-

cantly less (x̄ = 42.6) than the mean age of those without imaging data

(x̄= 48.6).

Table 1 displays the mean and SD for the Tinetti Gait score

at baseline and the 32-month follow-up. Analyses were conducted

to examine the association between demographic variables and the

Tinetti Gait score at baseline. Age was significantly negatively associ-

ated with the Tinetti Gait score (r = −0.405, p < 0.01). Additionally,
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3 =

(

F IGURE 1 Example populationmodel.

F IGURE 2 Baseline Tinetti Gait score by intellectual disability level (A), presence of seizures (B), presence of cataracts (C), and presence of
orthopedic condition (D)

there was a significant difference in the Tinetti Gait score across

ID levels (F[2, 215] = 5.87, p < 0.01). Tukey post hoc indicated that

participants with moderate ID (p = 0.013, 95% confidence interval

[CI] = [0.17, 1.88]) and severe/profound (p < 0.01, 95% CI = [0.38,

2.04]) had significantly lower baseline Tinetti Gait scores than those

with mild ID. The presence of seizures (t[216] = 5.327, p < 0.01),

cataracts (t[216] = 2.370, p = 0.02), and osteoarthritis and/or osteo-

porosis (t[216] = 6.541, p < 0.01) were also significantly negatively

associated with Tinetti Gait scores. The remaining health conditions

(Parkinson’s disease, tremors,myoclonus, traumatic brain injury, vision,

hearing, and gout) were not significantly related to Tinetti Gait scores

(p > 0.05). See Table 1 for the proportion of participants with a

history of seizures, cataracts, osteoarthritis, and osteoporosis. In sub-

sequent residual change models, age, ID, and presence of seizures,

cataracts, and osteoarthritis/osteoporosis were included as covariates.

Also see Figure 2 for boxplots comparing the presence and absence of

covariates to baseline Tinetti scores.

3.2 Cognitive decline

Table 1 also provides the mean and SD for cognitive scores at base-

line and the 32-month follow-up. In the residual changemodel, residual

change in DSMSE scores significantly predicted the 32-month Tinetti

Gait score (F[8, 198] = 16.24, p < 0.01). Specifically, Tinetti Gait scores

at 32 months were 0.632 points lower for every 1-point reduction

in residual DSMSE scores from baseline to the 32-month follow-up,

with other predictors held constant (p < 0.01). The residual change in

mCRT scores also significantly predicted Tinetti Gait scores at the 32-

month follow-up (F[8, 178[ = 13.98, p < 0.01). Tinetti Gait scores were

0.689points lower for every 1-point reduction in residualmCRT scores

from baseline to the 32-month follow-up while holding all other pre-

dictors constant (p < 0.01). Finally, the residual change in NTG scores

significantly predicted Tinetti Gait scores at the 32-month follow-

up (F[8, 196] = 17.96, p < 0.01). Tinetti Gait scores at 32 months

decreasedby0.814 for every1-point increase in residualNTGreported
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BARRY ET AL. 7 of 14

TABLE 1 Participant demographic characteristics.

Age (years), M± SD 44.4± 9.2

BMI,M± SD 31.5± 7.2

Sex,N (%)

Male 122 (56.0%)

Female 96 (44.0%)

Race,N (%)

White 213 (97.7%)

Black or African American 3 (1.4%)

Asian 2 (0.9%)

Ethnicity,N (%)

Hispanic or Latino 10 (4.6%)

Intellectual disability level,N (%)

Mild 121 (55.5%)

Moderate 77 (35.3%)

Severe/profound 20 (9.2%)

Clinical AD status at 32months,N (%)

Cognitively stable 149 (68.3%)

MCI 24 (11%)

Dementia 41 (18.8%)

Unable to determine 5 (2.3%)

APOE ε4,N (%)

Presence of at least one allele 50 (23%)

Trisomy type,N (%)

Full 196 (89.9%)

Mosaic 10 (4.6%)

Translocation 12 (5.5%)

Orthopedic condition,N (%)

Combined 67 (30.7%)

Osteoarthritis 36 (16.5%)

Osteoporosis 31 (14.2%)

Cataracts,N (%) 72 (33.0%)

Seizure history,N (%) 14 (6.4%)

Tinetti gait, M± SD

Baseline 11.04± 1.51

32-month 10.52± 2.16

DSMSE,M± SD

Baseline 58.29± 16.77

32-month 56.60± 19.01

mCRT,M± SD

Baseline 27.19± 10.71

32-month 26.81± 10.78

NTG,M± SD

Baseline 6.11± 9.07

32-month follow-up 5.33± 8.26

Abbreviations: AD, Alzheimer’s disease; APOE, apolipoprotein E; DSMSE,

Down Syndrome Mental Status Examination; MCI, mild cognitive impair-

ment; mCRT, modified Cued Recall Test; NTG, National Task Group–Early

Detection Screen for Dementia; SD, standard deviation.

TABLE 2 Regressionmodels of change in cognitive functioning
predicting gait at 32months.

Variable 𝜷 SE t value p value

DSMSE 0.632 0.139 4.817 2.89 e-06***

Age −0.0342 0.0158 −2.162 0.0318*

IDmoderate 0.130 0.257 0.504 0.615

ID severe/profound −0.624 0.435 −1.432 0.154

Seizure −0.316 0.501 −0.631 0.529

Orthopedic

condition

−0.565 0.308 −1.834 0.0682

Cataracts 0.0240 0.270 0.089 0.929

Tinetti baseline 0.533 0.0888 5.999 9.29 e-09***

mCRT 0.689 0.128 5.37 2.50 e-07***

Age −0.0132 0.0164 −0.804 0.423

IDmoderate 0.204 0.262 0.776 0.439

ID severe/profound −0.590 0.443 −1.33 0.185

Seizure −0.355 0.539 −0.659 0.511

Orthopedic

condition

−0.737 0.313 −2.35 0.0199*

Cataracts 0.202 0.271 0.748 0.456

Tinetti baseline 0.507 0.0910 5.572 9.18 e-08***

NTG −0.814 0.132 −6.15 4.39 e-09***

Age −0.0325 0.0153 −2.12 0.0353*

IDmoderate 0.140 0.248 0.565 0.573

ID severe/profound −0.468 0.429 −1.09 0.277

Seizure −0.0972 0.499 −0.195 0.850

Orthopedic

condition

−0.573 0.299 −1.91 0.0571

Cataracts 0.639 0.263 0.243 0.808

Tinetti baseline 0.528 0.0880 6.00 9.29 e-09***

Note: Orthopedic condition comprises osteoarthritis and osteoporosis.

Abbreviations: DSMSE, Down Syndrome Mental Status Examination; ID,

intellectual disability; mCRT, modified Cued Recall Test; NTG, National Task

Group–Early Detection Screen for Dementia; SE, standard error.

*p< 0.05.

***p< 0.001.

symptoms from baseline to the 32-month follow-up while holding all

other predictors constant (p < 0.01). See Table 2 for an overview of

each assessment’s residual change model and Figure 3 for the change

in Tinetti compared to the change in each assessment.

3.3 Neuroimaging AD biomarkers

Baseline A 𝛽 PET, NFT PET, and ICV controlled hippocampal volume

were implemented into respective residual change models. Baseline

A 𝛽 significantly predicted the 32-month Tinetti Gait score (F[8,

135] = 9.134, p < 0.01). The 32-month Tinetti Gait scores decreased

by 0.0143 points with each 1 Centiloid higher baseline A 𝛽 PET, hold-

ing all other predictors constant (p< 0.01). Baseline tau PETwas also a
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8 of 14 BARRY ET AL.

F IGURE 3 Change in cognitive functioning in relation to change in Tinetti score from baseline to 32-month follow-up. A, Modified Cued Recall
Test (mCRT). B, Down SyndromeMental Status Examination (DSMSE); C, National Task Group—Early Dementia Screener (NTG). Each line
represents a participant. Circles denote scores at baseline and arrows denote scores at the 32-month follow-up. The solid black line represents the
locally estimated scatterplot smoothing data trend, and the gray band represents the 95% confidence interval

significant predictor of Tinetti Gait scores at 32 months. The model

predicted a 3.94-point decrease in Tinetti Gait scores for every 1

SUVR increase in baseline tau PET representing regions consistent

with Braak stages I and II while holding all other predictors constant

(p < 0.01). Additionally, Tinetti Gait scores decreased by 5.10 and 5.12

points for every 1 SUVR increase in baseline tau PET in regions repre-

senting Braak stages III and IV andV andVI, respectively, while holding

all other predictors constant (p < 0.01). Finally, the residual change

model of total hippocampal volume was found to be a significant pre-

dictor of 32-month Tinetti Gait scores (F[9, 72] = 4.372, p < 0.01). ICV

was included in thismodel to control total brain size. Tinetti Gait scores

decreased by 9.26 e–04points for every 1mm3 reduction in hippocam-

pal volume while holding all other predictors constant (p < 0.01). See

Table 3 for an overview of the residual change models for A 𝛽, tau,

and hippocampal volume and Figure 4 for the change in Tinetti by each

neuroimaging procedure.

3.4 Clinical AD status

In residual changemodels, clinical AD status significantly predicted the

32-month Tinetti Gait score (F[10, 197] = 17.22, p < 0.01). Compared

to participants who remained cognitively stable, participants who had

dementia scored an average of 2.12 less points on the Tinetti Gait

assessment (p<0.01).However, Tinetti scores for thosewithMCIwere

not significantly different from participants who remained cognitively

stable (p = 0.34). See Table 4 for an overview of the clinical AD status

residual change model, and Figure 5 for boxplots of clinical AD status

by change in Tinetti.

4 DISCUSSION

Gait impairments are a prominent feature of AD, often beginning prior

to dementia onset in the general adult population.21,22 The present

studywas the first longitudinal study to assess change in gait in relation

to neuroimaging biomarkers of AD pathologies, cognitive decline, and

AD clinical status in adults with DS. Overall, findings suggest that gait

impairments have robust associations with AD pathology and symp-

tomology in DS and thus are part of the broader array of functional

declines evident in DSAD that should be included in DSAD screening

efforts.

Adults with DS who had higher Aβ and NFT burden at baseline evi-

denced more gait impairments at 32 months than those with lower

Aβ and NFT burden. These results are in line with findings on late-

onset sporadic AD (LOAD) and autosomal-dominant AD, in which
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BARRY ET AL. 9 of 14

TABLE 3 Regressionmodels of baseline AD biomarkers predicting gait at 32months.

Variable 𝜷 SE t value p value

A 𝛽 −0.0143 0.00604 −2.37 0.00288**

Age −0.0377 0.0243 −1.55 0.0193*

IDmoderate −0.0354 0.340 −0.104 0.917

ID severe/profound −0.686 0.507 −1.35 0.179

Seizure −0.0365 0.762 −0.048 0.962

Orthopedic condition −0.477 0.421 −1.13 0.259

Cataracts 0.0631 0.360 0.175 0.861

Tinetti baseline 0.571 0.149 3.83 1.97 e-04***

NFT I–II −3.94 1.155 −3.41 9.77 e-04***

Age −0.0271 0.0304 −0.891 0.375

IDmoderate 0.0235 0.434 0.0540 0.957

ID severe/profound −0.200 0.531 −0.376 0.708

Seizure −0.0336 1.719 −0.0200 0.984

Orthopedic condition −0.563 0.557 −1.011 0.315

Cataracts −0.203 0.434 −0.468 0.641

Tinetti baseline 0.360 0.176 2.047 0.0436*

NFT III–IV −5.10 1.21 −4.23 5.63 e-05***

Age −0.0244 0.0283 −0.862 0.391

IDmoderate −0.0476 0.416 −0.115 0.909

ID severe/profound −0.266 0.515 −0.516 0.607

Seizure −0.00538 1.67 −0.00300 0.997

Orthopedic condition −0.600 0.537 −1.12 0.268

Cataracts −0.152 0.420 −0.362 0.718

Tinetti baseline 0.332 0.171 1.95 0.0548

NFTV–VI −5.124 1.16 −4.40 3.00 e-05***

Age −0.0428 0.0261 −1.64 0.105

IDmoderate −0.207 0.410 −0.505 0.615

ID severe/profound −0.232 0.512 −0.454 0.651

Seizure 0.0861 1.65 0.052 0.959

Orthopedic condition −0.461 0.528 −0.874 0.385

Cataracts −0.268 0.419 −0.641 0.523

Tinetti baseline 0.340 0.169 2.00 0.0481*

Hippocampal volume 9.26 e-04 2.36 e-04 3.93 0.000195***

Age −0.0303 0.0327 −0.925 0.358

IDmoderate −0.0388 0.460 −0.844 0.401

ID severe/profound 0.0201 0.613 0.0330 0.974

Seizure 1.33 1.72 0.773 0.442

Orthopedic condition −0.0899 0.593 −0.152 0.880

Cataracts −0.110 0.500 −0.220 0.826

Intracranial volume −4.25 e-06 1.59 e-06 −2.67 0.00942**

Tinetti baseline 0.640 0.318 2.01 0.0484*

Note: Orthopedic condition comprises osteoarthritis and osteoporosis.

Abbreviations: A 𝛽, amyloid beta; AD, Alzheimer’s disease; ID, intellectual disability; NFT, neurofibrillary tangle; SE, standard error.

*p< 0.05.

**p< 0.01.

***p< 0.001.
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10 of 14 BARRY ET AL.

F IGURE 4 Change in Tinetti score from baseline to the 32-month follow-up. Each line represents a participant based on (A) amyloid burden in
Centiloids, (B) low versus high hippocampal volume, (C) high versus low neurofibrillary tangles (NFTs) in Braak V and VI regions. Circles denote
scores at baseline and arrows denote scores at 32-month follow-up

TABLE 4 Regressionmodel of change in clinical AD status predicting gait at 32months.

Variable 𝜷 SE t value p value

MCI −0.377 0.398 −0.948 0.344

Dementia −2.12 0.364 −5.81 2.51 e-08***

Age −6.04 e-03 0.0173 −0.350 0.727

IDmoderate 0.204 0.255 0.799 0.425

ID severe/profound −0.382 0.424 −0.903 0.368

Seizure −0.0820 0.305 −0.168 0.869

Orthopedic condition −0.794 0.305 −2.61 0.00987**

Cataracts 0.0864 0.266 0.325 0.745

Tinetti baseline 0.529 0.0862 6.135 4.73 e-09***

Note: Orthopedic condition comprises osteoarthritis and osteoporosis.

Abbreviations: AD, Alzheimer’s disease; ID, intellectual disability; MCI, mild cognitive impairment; SE, standard error.

**p< 0.01.

***p< 0.001.

higher A 𝛽 and NFT burden is associated with slower gait speed,34

decreased cadence,67 and lower overall gait quality.68,69 In the current

study, NFT in Braak stages III and IV and V and VI had the great-

est impact on Tinetti Gait scores, suggesting that NFT accumulation

in limbic and neocortical areas may take a toll on gait. Hippocam-

pal atrophy was also associated with gait impairments across time in

adults with DS, mirroring findings in the general population of older

adults.70

The current study also examined associations between gait perfor-

mance and AD-related cognitive declines in DS. Even after controlling

for age, premorbid ID level, and medical conditions that can impact

gait (seizures, orthopedic conditions, cataracts), greater decline in gait
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BARRY ET AL. 11 of 14

F IGURE 5 Change in Tinetti scores from baseline to the
32-month follow-up by clinical Alzheimer’s disease (AD) status at the
32-month follow-up. The y axis represents the change in Tinetti scores
from baseline to the 32-month follow-up. Negative numbers represent
a decrease Tinetti scores and positive numbers represent an increase
in Tinetti scores

performance across the 32 months was associated with cognitive

declines (as indicated by the mCRT and DSMSE) and increases in

informant-reporteddementia symptoms (NTG). In addition, adultswith

DS who were deemed to have dementia at 32 months (15% developed

dementia during the study period while 8% had dementia at baseline)

had lower Tinetti Gait scores than those who were cognitively stable.

However, Tinetti Gait scores for participants with MCI at 32 months

(7% developedMCI during the study periodwhile 3% hadMCI at base-

line) were not significantly different from those who were cognitively

stable. Impairments in gait were most strongly associated with later

stages of tau PET NFT burden (i.e., spread across the neocortex). Thus,

gait impairmentsmay be observed closer to the onset of dementia than

MCI in adults with DS, at least using observable gross measures of

gait. However, it is also possible that the limited number of adults with

DS and MCI (N = 24) obscured detection of more subtle impairments.

Instead, more precise gait measures (e.g., technology-based gait mats)

may be more sensitive to declines in gait that precede or correspond

with onset of MCI in DS. Overall, these findings are consistent with

research on LOAD outside of DS in which gait impairments are evident

prior to dementia early during the unfolding of AD symptomology, with

increasing severity from early to late stages of dementia.71–75

The current study had several strengths. Analyses leveraged a large

natural history cohort of adults with DS, and the cognitive and neu-

roimaging protocols were harmonized across data collection sites. The

clinical AD status groups were based on a consensus process that

drew on a large battery of direct and informant-reported assessments.

Additionally, this study provides robust and multimodal evidence that

declines in gait are linked to AD pathology. There were also limitations

to the current study. First, the gait assessment was based on obser-

vational coding. Raters complete a comprehensive neuropsychological

and gait training, but no inter-rater reliability has been established

across sites. Second, only some of the ABC-DS data collection sites

included the neuroimaging biomarkers of interest, which reduced the

sample size for some models. A small number of attempted MRI scans

were uninterpretable due to participant movement, but it is possible

that this altered sample characteristics to be more representative of

higher functioning adults with DS. It should be noted that the ABC-

DS protocol includes data collection on participants every 16 months.

However, neuroimaging biomarkers (Aβ, NFT, and hippocampal vol-

ume) are only obtained at baseline and 32-month visits. Thus, current

analyses focused on change across 32 months (baseline to month 32

visit) given our inclusion of neuroimaging biomarkers. In addition, this

longer duration (32 vs. 16 months) was deemed to be better suited

for detecting changes in cognition and gait. That said, future stud-

ies that include longer time intervals and additional data points are

needed to better capture individual change trajectories.76 Neuroimag-

ing data were only available on a subset of the sample and this subset

was younger than those without imaging data. Thus, neuroimaging

findings may not fully capture effects in later disease stages. Finally,

findings are not representative of non-verbal adults with DS and/or

those with a mental age of < 3 years given study inclusion criteria.

Future studies should include adults with DS with a broader range

of racial/ethnic diversity backgrounds, which is a goal of the ABC-DS

study’s current recruitment efforts. Future studies should also focus

on regional amyloid, tau, and neurodegeneration outcomes to bet-

ter understand mechanisms underlying the associations between gait

change and clinical and neuropathological progression of AD in people

with DS. Additionally, future studies using more sensitive technology-

based gait mats may be able to detect even earlier subtle changes in

gait related to AD pathology and symptomology. Finally, it will also be

important for future studies to examine which specific domains of gait

(e.g., cadence, foot clearance, and step symmetry) are impacted by AD

pathology and are best able to distinguish among DSAD clinical status

groups.

In summary, our findings suggest that gait impairments are a key fea-

tureofDSAD.Theonsetof gait impairments is associatedwithelevated

Aβ and NFT burden and hippocampal atrophy and corresponds with

early cognitive declines, dementia symptoms, and clinical AD status. In

particular, 1 SUVR tau PET change in brain regions corresponding to

NFT III and IVandNFTVandVIwas associatedwith an≈40%decrease

in Tinetti scores, demonstrating Tinetti’s sensitivity to NFT burden.

These findings may also have important clinical implications, as gait

assessments could serve as a screening tool for AD detection in adults

with DS. The Tinetti Gait Test may offer a quick, cost-effective, non-

invasive screen for gait impairments that occur as part of the evolution

of AD symptomology in adults with DS. Additionally, caregivers may

consider monitoring changes in gait, potentially lending early insight

to cognitive decline and fall risk. Future studies are needed to further

establish the relationship between gait and AD development in adults

with DS.
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